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Abstract: The primary objective of this paper is to develop output only modal identifi cation and structural damage 
detection. Identifi cation of multi-degree of freedom (MDOF) linear time invariant (LTI) and linear time variant (LTV—due 
to damage) systems based on Time-frequency (TF) techniques—such as short-time Fourier transform (STFT), empirical 
mode decomposition (EMD), and wavelets—is proposed. STFT, EMD, and wavelet methods developed to date are reviewed 
in detail. In addition a Hilbert transform (HT) approach to determine frequency and damping is also presented. In this paper, 
STFT, EMD, HT and wavelet techniques are developed for decomposition of free vibration response of MDOF systems into 
their modal components. Once the modal components are obtained, each one is processed using Hilbert transform to obtain 
the modal frequency and damping ratios. In addition, the ratio of modal components at different degrees of freedom facilitate 
determination of mode shape. In cases with output only modal identifi cation using ambient/random response, the random 
decrement technique is used to obtain free vibration response. The advantage of TF techniques is that they are signal based; 
hence, can be used for output only modal identifi cation. A three degree of freedom 1:10 scale model test structure is used to 
validate the proposed output only modal identifi cation techniques based on STFT, EMD, HT, wavelets. Both measured free 
vibration and forced vibration (white noise) response are considered. The secondary objective of this paper is to show the 
relative ease with which the TF techniques can be used for modal identifi cation and their potential for real world applications 
where output only identifi cation is essential. Recorded ambient vibration data processed using techniques such as the random 
decrement technique can be used to obtain the free vibration response, so that further processing using TF based modal 
identifi cation can be performed.
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1    Introduction

Modal identifi cation of structural systems is a key 
step in the process of structural identifi cation, structural 
health monitoring and damage detection. It essentially 
requires an inverse problem to be solved from a measured 
or recorded response of the structure under ambient or 
dynamic loading such as earthquakes, wind and waves. 
The aim is to estimate properties of the structure such 
as natural frequencies, mode shapes, energy dissipation 
characteristics and strength and stiffness deterioration 
due to damage.

System identifi cation of structures has classically 
been performed in two different paradigms: (i) time 
domain analysis and (ii) frequency domain analysis. 
Several approaches to time domain system identifi cation 
have been developed like state estimation using a 
Kalman fi lter, stochastic analysis and modeling, 
recursive modeling and least squares method. Recently, 
system identifi cation and fault detection techniques are 
also being developed. The work of Nagarajaiah and 
coworkers has led to the development of a new interaction 
matrix formulation and input error formulation (Koh
et al., 2005a,b, 2008), based on the concept of analytical 
redundancy, to detect and isolate the damage/fault in 
structural members, sensors, and actuators in a structural 
system (Li et al., 2007; Chen and Nagarajaiah, 2007, 
2008a,b) . The new techniques can detect the presence of 
fault/damage in a structure (level 1), locate the member/
sensor/actuator where fault/damage is located (level 2), 
and determine the time instants of occurrence (level 3). 
The resulting error function would indicate real time 
failure/damage of a member, sensor or actuator. The 
interaction matrix technique allows the development 
of input-output equations that are only infl uenced by 
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one target input. These input-output equations serve 
as an effective tool to monitor the integrity of each 
member, sensor or actuator regardless of the status of 
the others. The procedure requires the knowledge of 
the analytical model of the healthy system being tested, 
so the analytical redundancy can be experimentally 
predetermined through input-output based system 
identifi cation. Additionally, the authors have developed 
an ARMarkov observer bank algorithm to detect the 
extent of damage—level 4 (Dharap et al., 2006). The 
authors have also shown experimentally that the proposed 
algorithms successfully identify failures of actuators or 
sensors that are attached to the truss structure in tests on 
the NASA 8-bay 4 meter long truss (Koh et al., 2005a; 
Li et al., 2007). Considering the limited number of 
measurements and the complexity of the structure, test 
results ensure the capability of the proposed procedure 
in detecting and isolating the simultaneously and 
arbitrarily occurring multiple failures. In addition, 
new time segmented system identifi cation techniques 
have been proposed (Nagarajaiah and Dharap, 2003; 
Nagarajaiah and Li, 2004)

Signal based identifi cation, based on analysis of 
response signals of structures, has also been developed. 
The classical method of frequency domain analysis 
is by means of Fourier transform, and its algorithmic 
implementation, the Discrete Fourier Transformation 
(DFT). Though DFT has been widely used for modal 
analysis and other system identifi cation tasks, it has 
several limitations. Fourier analysis is inherently global 
in nature and provides average information over time, 
ignoring the time varying nature of a nonstationary signal.

In parallel with the advances in sensing and data 
acquisition techniques, there has been a tremendous 
amount of development of signal processing techniques, 
which allows extraction of information from the available 
data sensed in the form of either signals or images. 
Several identifi cation techniques have been proposed for 
structural dynamic systems in the recent past (Worden 
and Tomlinson, 2001). Most of the techniques and 
algorithms proposed are based on the use of different 
integral transforms. Among the available techniques, 
those based on the use of Hilbert transform (HT) by 
Tomlinson (1987) and Feldman (1994a,b) have become 
popular. Time-frequency methods (Cohen, 1995; Huang 
et al., 1998), such as short-time Fourier transform (STFT) 
and wavelets, are used extensively for signal processing. 
New techniques such as Empirical Mode Decomposition 
(EMD) (Huang et al., 1998) have been developed for 
signal processing of non-stationary signals. STFT and 
EMD techniques, with Hilbert Transform, have played 
a key role in the development of new time-frequency 
based controllers for semiactive, smart tuned mass 
dampers (Nagarajaiah et al., 1999; Nagarajaiah and 
Varadarajan, 2001, 2005; Nagarajaiah and Sonmez, 
2007; Nagarajaiah, 2009; Narasimhan and Nagarajaiah, 
2005; Varadarajan and Nagarajaiah, 2004). Modal 
identifi cation using EMD and HT has been developed 

(Nagarajaiah and Varadarajan, 2001; Nagarajaiah, 2009; 
Yang ., 2003, 2004). Wavelets have played a key role 
in the development of new linear quadratic time varying 
controllers (Basu and Nagarajaiah, 2008) and modal 
identifi cation of time varying systems (Basu et al., 2008) 
by the authors. Wavelets, with HT, have also been used 
to estimate frequency and damping (Staszewski, 1997), 
modal and damage identifi cation (Staszewski et al., 
1998; Staszewski and Robertson, 2007; Basu 2007; 
Chakraborty et al., 2006; Basu and Nagarajaiah, 2008; 
Pakrashi ., 2007; Goggins et al., 2006).

Recently, several time-frequency analysis 
tools, particularly the wavelet analysis technique, 
have proved to be powerful for system assessment, 
structural health monitoring and fault monitoring 
(Staszewski and Tomlinson, 1994; Wang and 
McFadden, 1996; Al-Khalidy et al., 1997; Ghanem 
and Romeo, 2000; Addison et al., 2002), system 
identifi cation (Staszewski, 1997, 1998; Ruzzene
et al., 2000, Gurley and Kareem, 1999; Kitada, 1998; 
Kyprianou and Staszewski, 1999; Robertson et al., 
1998; Lardies and Gouttebroze, 2000; Piombo et al., 
2000; Ghanem and Romeo, 2001; Kijewski and Kareem 
2003, 2006, 2007) and damage detection (Naldi and 
Venini, 1997; Staszewski et al., 1998; Liew and Wang, 
1998; Okafor and Dutta, 2000; Wang and Deng, 1999; 
Hou et al., 2000; Patsias et al., 2002; Melhem and Kim, 
2003; Chang and Chen, 2003; Gentile and Messina, 
2003; Loutridis et al., 2004; Rucka and Wilde, 2006; 
Spanos et al., 2006) by analysing vibration signals. 
Some of the early researchers on analysis of vibration 
signals using wavelets include (Newland, 1993; 
1994a,1994b; Zeldin and Spanos, 1998; Basu and Gupta, 
1997,1998,1999a,b). These references are representative 
of the vast amount of literature available as a result of 
research in the past decade and a half. An overview 
on wavelet analysis with several different applications 
has been provided by Robertson and Basu (2008) and 
Staszewski and Robertson (2007).

The primary objective of this paper is to develop 
output only modal identifi cation and structural damage 
detection. Identifi cation of multi-degree of freedom 
(MDOF) linear time invariant (LTI) and linear time 
variant (LTV—due to damage) systems based on Time-
frequency (TF) techniques—such as short-time Fourier 
transform (STFT), empirical mode decomposition 
(EMD), and wavelets—is proposed. STFT, EMD, and 
wavelet methods developed to date are reviewed in 
suffi cient detail. In addition, a Hilbert transform (HT) 
approach to determine frequency and damping is also 
presented. In this paper, STFT, EMD, HT and wavelet 
techniques are developed for decomposition of free 
vibration response of MDOF systems into their modal 
components. Once the modal components are obtained, 
each one is processed using Hilbert transform to obtain 
the modal frequency and damping ratios. In addition, 
the ratio of modal components at different degrees of 
freedom facilitate determination of mode shape. In cases 
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with output only modal identifi cation using ambient/
random response, the random decrement technique is 
used to obtain the free vibration response.

The advantage of TF techniques is that they are 
signal based; hence, can be used for output only modal 
identifi cation. A three degree of freedom 1:10 scale 
model test structure is used to validate the proposed 
output only modal identifi cation techniques based 
on STFT, EMD, HT, wavelets. Both measured free 
vibration and forced vibration (white noise) response are 
considered. The secondary objective of this paper is to 
show the relative ease with which the TF techniques can 
be used for modal identifi cation and their potential for 
real world applications where output only identifi cation 
is essential. Recorded ambient vibration data processed 
using techniques such as the random decrement 
technique can be used to obtain the free vibration 
response, so further processing using TF based modal 
identifi cation can be performed.

2   Time-frequency methods: STFT, EMD, and 
     HT

2.1   Analytical signal and Hilbert transform

Signals in nature are real valued but for analysis, it 
is often more convenient to deal with complex signals. 
One wants the real part, s(t), of the complex signal, sa(t), 
to be the actual signal under consideration. How is the 
imaginary part, s t( ) , fi xed to form the complex signal? 
In particular, to write a complex signal, how is  s t( )  
chosen? the standard method is to form the “analytic” 
signal, sa(t), 

 s t s t s ta j( ) = ( ) + ( )                         (1)

where j = −1 . This can be achieved by taking the 
spectrum of the actual signal, s(ω), deleting the negative 
part of the spectrum, retaining only the positive part of 
the spectrum, multiply it by a factor of 2, and then form 
the new (complex) signal by Fourier inversion. More 
specifi cally if there is a real signal, s(t), calculate s(ω). 
Form the complex signal with the positive part of s(ω) 
only, 

 s t s t
a

j( ) = ( )∞

∫2 1
2 0π

ω ωe dω                 (2)

The factor of two is inserted so that the real part of 
the complex signal will be equal to the real signal one 
started out with. Therefore, substituting for s(ω)

 s t s t tt t
a

j j( ) = ( )∫∫
∞ −1

0π
’ ’’

e e d dω ω ω           (3)

Using the fact that 

 e dj jω ω δx x
x0

∞

∫ = ( ) +π                   (4)

Results in

e dj jω
ω δ

t t t t
t t

−( )∞

∫ = −( ) +
−

’
’

’0
π              (5)

Hence 

s t s t t t
t t

ta
j( ) = ( ) −( ) +

−
⎛
⎝⎜

⎞
⎠⎟∫

1
π

π’ ’
’

’δ d            (6)
or

  s t s t
s t
t t

ta
j( ) = ( ) +

( )
−−∞

∞

∫π

’

’
’d                   (7)

The imaginary part turns out to be the Hilbert 
transform: 

 s H s t
s t
t t

t= ( )⎡⎣ ⎤⎦ =
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−−∞

∞

∫
1
π

’

’
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Hence, 
  s t s t H s t s t sa j j( ) = ( ) + ( )⎡⎣ ⎤⎦ = ( ) +           (9)

The complex signal thus formed, sa(t) , is called the 
analytic signal. Note that by defi nition analytic signals 
are signals whose spectrum consist only of positive 
frequencies. That is, the spectrum is zero for negative 
frequencies.

As per Eqs. (1) – (9), the analytic signal can be 
obtained by: (1) taking the Fourier transform of s(t); 
(2) zeroing the amplitude for negative frequencies and 
doubling the amplitude for positive frequencies; and (3) 
taking the inverse Fourier transform. The analytic signal 
sa(t) can also be expressed as

 s t A t t
a

j( ) = ( ) ( )e ϕ                      (10)

where, A(t) = instantaneous amplitude and ϕ t( )  = 
instantaneous phase 

2.2   Instantaneous frequency

 In the analytic signal given by Equation 1 and 10, 
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 instantaneous frequency ωi(t) is given by 
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From Eqs. (12) and (13) one gets 

  ω
ϕ

i t
t

t
s t s t s t s t

s t s t
( ) =

( )
=

( ) ( ) − ( ) ( )( )
( ) + ( )

d
d 2 2

     (14)

2.3   Short-fi me Fourier transform and spectrogram

The Fourier transform (FT) of a signal s(t) is given 
by s s t ttω ω( ) = ( ) −∫

1
2π

e dj . The short-time Fourier 

transform (STFT), the fi rst tool devised for analyzing 
a signal in both time and frequency, is based on FT 
of a short portion of signal sh(τ) sampled by a moving 
window h(τ-t ). The running time is τ and the fi xed time 
is t. Since the time interval is short compared to the 
whole signal, this process is called taking the STFT. 

 s sht
jω τ τωτ( ) = ( )

−∞

∞ −∫
1
2π

e d              (15)

where sh(τ) is defi ned as follows: 

 s s h th τ τ τ( ) = ( ) −( )                    (16)

in which h(τ-t) is an appropriately chosen window 
function that emphasizes the signal around the time t, 
and is a function τ-t, i.e., s sh τ τ( ) = ( )  for τ near t and 
sh τ( ) = 0  for τ far away from t. Considering this signal 
as a function of τ, one can ask for the spectrum of it. Since 
the window has been chosen to emphasize the signal at t, 
the spectrum will emphasize the frequencies at that time 
and hence give an indication of the frequencies at that 
time. In particular, the spectrum is,  

s s h tt
jω τ τ τωτ( ) = ( ) −( )

−∞

∞ −∫
1
2π

e d       (17)

which is the short-time Fourier transform (STFT).
Summarizing, the basic idea is that to fi nd the 

frequency content of the signal at a particular time, t, 
take a small piece sh(τ) of the signal around that time 
and Fourier analyze it, neglecting the rest of the signal, 
obtaining a spectrum at that time. Next, take another 
small piece, of equal length of the signal, at the next 
time instant and get another spectrum. Continue until 
the entire signal is sampled. The collection of all these 
spectrum (or slices at every time instant) gives a time-
frequency spectrogram that covers the entire signal, and 
captures the localized time varying frequency content 
of the signal. If one performs a FT, then the localized 
variations of frequency content are lost, since FT is 
performed on the whole signal; the result is an average 
spectrum of all those obtained by STFT.

The energy density of the modifi ed signal and the 
spectrogram is given by,  

 

P t s,ω ω( ) = ( )t
2

                         (18)

or

 P t s h tsp
j,ω τ τ τωτ( ) = ( ) −( )

−∞

∞ −∫
1
2

2

π
e d       (19)

 
By analogy with the previous discussion, it can 

be used to study the behavior of the signal around the 
frequency point ω. This is done by choosing a window 
function whose transform is weighted relatively higher 
at the frequency ω.
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where ω′ is running frequency and fi xed frequency is ω 
The spectrogram is given by 

P t s H t
sp

j, ’ ’ ’’
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−∞

∞

∫
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2

2

π
e d       (23)

The limitation of STFT is its fi xed resolution (this 
is discussed in more detail in the section on wavelets), 
which can overcome multi-resolution analysis using 
wavelets. In STFT, the length of the signal segment 
chosen or the length of the windowing function h(t) 
determines the resolution: broad window results in 
better frequency resolution but poor time resolution, and 
narrow window results in good time resolution but poor 
frequency resolution, due to the time-bandwidth relation 
(uncertainty principle (Cohen, 1995)). Note h(t) and 
H(ω) are Fourier transform pairs (Eq.(20), i.e., if h(t) 
is narrow, more time resolution is obtained, however,  
H(ω)  becomes broad resulting in poor frequency 
resolution and vice versa.

2.4   STFT implementation procedure

The implementation procedure for the STFT in 
the discrete domain is carried out by extracting time 
windows of the original nonstationary signal s(t). After 
zero padding and convolving the signal with Hamming 
window, the DFT is computed for each windowed signal 
to obtain STFT, st(ω), of signal sh(τ) . If the window width 
is n t.Δ (where n is number of points in the window, and 
Δt  is the sampling rate of the signal), the k-th element 
in st(ω) is the Fourier coeffi cient that corresponds to the 
frequency, 

ωk
k

n t
n t= ⎛

⎝⎜
⎞
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2π
Δ

Δfor window width          (24)
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2.5   Empirical mode decomposition

For a multicomponent signal–as in a multimodal 
or multi-degree of freedom (MDOF) response--the 
procedure described in the previous section to obtain 
analytic signal and instantaneous frequency cannot 
be applied directly, as described earlier. The empirical 
mode decomposition (EMD) technique, developed by 
Huang (1998), adaptively decomposes a signal into 
“intrinsic mode functions” which can then be converted 
to an analytical signal using HT. The time-frequency 
representation and instantaneous frequency can be 
obtained from the intrinsic modes extracted from the 
decomposition, using HT. The principle technique is to 
decompose a signal into a sum of functions that (1) have 
the same number of zero crossings and extrema, and (2) 
are symmetric with respect to the local mean. The fi rst 
condition is similar to the narrow-band requirement for 
a stationary Gaussian process. The second condition 
modifi es a global requirement to a local one, and is 
necessary to ensure that the instantaneous frequency 
will not have unwanted fl uctuations as induced by 
asymmetric waveforms. These functions are called 
intrinsic mode functions (IMF denoted by imfi) and are 
obtained iteratively (Huang et al., 1998). The signal, 
xj(t), for example, jth degree of freedom displacement of 
a MDOF system, can be decomposed as follows 

  x t t r tj i n
i

n

( ) = ( ) + ( )
=
∑ imf

1
                 (25)

where imfi(t) are the "intrinsic mode functions" (note: 
dominant IMFs are equivalent to individual modal 
contributions to xj(t)-which will be demonstrated in a 
later section) and rn(t) is the residue of the decomposition. 
The intrinsic mode functions are obtained using the 
following algorithm:

1. Initialize; r x t ij0 1= ( ) =,
2. Extract the imfi  as follows:
(a) Initialize: h t r t ji0 1 1( ) = ( ) =− ,  
(b) Extract the local minima and maxima of  hj−1(t)
(c) Interpolate the local maxima and the local 

minima by a spline to form upper and lower envelopes 
of  h tj− ( )1 ,  emax t( ) and  emin t( )  respectively.

(d) Calculate the mean mj-1of the upper and lower 
envelopes = ( ) + ( )( )e emax min /t t 2

(e)    h t h t m tj j j( ) = ( ) − ( )− −1 1  .
(f) If stopping criterion is satisfi ed then set 

imfi jt h t( ) = ( )  else go to (b) with  j = j + 1
3.   r t r t ti i i( ) = ( ) − ( )−1 imf  
4.   If ri(t) still has at least 2 extrema then go to 2 

with i = i + 1 else the decomposition is fi nished and ri(t) 
is the residue.

The analytical signal, sa(t), and the instantaneous 
frequencies ωi(t), associated with each imfi(t) component 
can be obtained using Eqs. (1) - (14) by letting 
s t ti( ) = ( )imf  and s t s t H s ta j( ) = ( ) + ( )( )  for each 

IMF component.
To ensure that the IMF components retain the 

amplitude and frequency modulations of the actual 
signal, a satisfactory stopping criteria for the sifting 
process is defi ned (Rilling et al., 2003). A criteria for 
stopping is accomplished by limiting the standard 
deviation, SD (Huang et al., 1998), of h(t), obtained 
from consecutive sifting results as 

 SD =
( ) − ( )( )

( )

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−

−=
∑

h k t h k t

h k t
j j

jk

l 1

2

1
2

0

Δ Δ

Δ
           (26)

where l T t= / Δ  and T = total time. A typical value for 
SD is set between 0.2 and 0.3  (Rilling et al., 2003). 
An improvement over this criterion is based on two 
thresholds θ1 and θ2, aimed at globally small fl uctuations 
in the mean while taking into account locally large 
excursions. This amounts to introducing a mode 
amplitude a(t) and an evaluation function σ(t): 

  a t
t t( ) =

( ) − ( )⎛

⎝
⎜

⎞

⎠
⎟

e emax min

2                   (27)
 

   σ t
m t
a t

( ) =
( )
( )                          (28)

Sifting is iterated until σ θt( ) < 1  for a fraction of 
the total duration while σ θt( ) < 2  for the remaining 
fraction. Typically θ1 0 05≈ .  and θ θ2 110≈  (Rilling
et al., 2003).

3   Modal identifi cation of LTI and LTV systems 
    using EMD/HT and STFT

EMD can be used to decompose a signal into its 
multimodal components (+ residual IMF components 
+ residue). In a lightly damped system with distinct 
modes, EMD can extract the multicomponent modal 
contributions [or IMFs] from the j th DOF displacement 
response of a MDOF system. Each of these IMF 
components can then be analyzed separately to obtain 
the instantaneous frequency and damping ratios. If the 
displacement of MDOF LTI system is represented by 
vector x = qΦΦ , where ΦΦ = modal matrix, q = modal 
displacement vector, then combining it with equation 25 
leads to the following equation for xj(t), the jth degree of 
freedom displacement of a MDOF LTI system, 

  
x t t r t q t t r tj i n

i

n

ji i
i

m

i
i m

n

n( ) = ( ) + ( ) = ( ) + ( ) + ( )
= = =
∑ ∑ ∑imf imf

1 1
ΦΦ

(29)

where m = number of modes of a MDOF system and 
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IMF's from m to n are treated as residual terms along 
with the actual residual and discarded.

The equation of motion of a MDOF is given by 

 Mx Cx Kx MR+ + = f                  (30)

substituting x = qΦΦ , 

ΦΦ ΦΦ ΦΦ ΦΦ ΦΦ ΦΦ ΦΦT T T TM q + C q + K q = MRf     (31)

A proportionally damped system with orthonormal 
ΦΦ  leads to m uncoupled equations of motion with
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 q q q fk k k k k k k+ + =2 2ξ ω ω Γ                (32)

where Γ k k= ΦT MR . With f as input and qk as output, 
taking Laplace transform 

s s q s f sk k k k k
2 22+ +( ) ( ) = ( )ξ ω ω Γ             (33)

Dropping Γk  for generality, the transfer function is 
then given by 

 H s
s sk

k k k

( ) =
+ +

1
22 2ξ ω ω

               (34)

and the frequency response function (FRF) is given by 

  Hk
k k k

j
j

ω
ω ξ ω ω ω

( ) =
− + +

1
22 2              (35)

Noting xk k=ΦΦ qk  and xjk as the jth component of the 
displacement contributed by the kth mode, and with f as 
input and xjk as output, the transfer function             

H jk
k k k

jkj
j

ω
ω ω ξ ω ω

φ( ) =
−( ) +

1
22 2

         (36)

If the structure is lightly damped, the peak transfer 
function occurs at ω ω= k with amplitude 

  H jk
k

k
jkjω

ξ
ξ

φ( ) =
+1 4
2

2

                     (37)

From Eq. (37) it is seen that magnitudes of the peaks 
of FRF at ω ω= k are proportional to the components 
of the kth modal vector. The sign of these components 
can be determined by phases associated with the FRF's: 
if two modal components are in phase, they are of the 
same sign and if the two modal components are out-of-
phase, they are of opposite sign. With the knowledge of 
magnitude of peaks, the damping factor, ξk can be solved 
from Eq. (37). From Eq. (36), summing over all modes 
gives 

Hij
ik jk

k k kk

n

j
j

ω
φ

ω ω ξ ω ω
( ) =

−( ) +=
∑

φ
2 2

1 2
             (38)

which can be written as

H
A

ij
k ij

k k kk

n

j
j

ω
ω ω ξ ω ω

( ) =
−( ) +=

∑ 2 2
1 2

           (39)

where k ij ik jkA = φ φ  being the residues or modal 
components. Taking the inverse transform of Eq. (39) 
gives the general form of the impulse response function 
(IRF) 
 

h t
A

tij
k ij

k

t
dk

k

n
k k( ) = ( )−

=
∑ ω

ωξ ω

d

e sin
1

               (40)

where ω ω ξdk k k= − =1 2 damped frequency of the kth 
mode. It follows from Eq. (39) that MDOF linear time 
invariant system frequency responses are the sum of n 
single degree of freedom frequency responses, provided 
that well separated modes and light proportional 
damping are valid, and the residues and the modes 
are real. For non-proportionally damped systems, the 
residues and modes become complex.

Consider the function e− +σ ωk k tj  with σ ξ ωk k nk=  
and ω ωk k= d , and for a damped asymptotically stable 
system with σ > 0  , Eq. (36) for mode k can be rewritten 
by taking the inverse Fourier transform

 
  h t A tjk jk

t
k

k( ) = ( )−e σ ωsin d                    (41)

 h t A tjk jk
t

k
k( ) = ( )−e σ ωcos d                   (42)

 
where Ajk

jk

dk

=
φ
ω

 leading to the analytical signal 

  h t h t h tjk jk jk
a

j( ) = ( ) + ( )                 (43)

that can be written as 

 h t Ajk jk
t

a

j( ) = e ϕ                         (44)
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The magnitude of this analytical signal is given by 
 

h t A h t h tjk jk jk jk
a a a( ) = = ( ) + ( )2 2

          (45)

Substituting Eq. (3) and simplifying the results in 

 A Ajk jk
tk= −e σ                            (46)

 
Taking the natural logarithm of this expression 

yields 

 log log logA t A t Ajk k jk k n jk= − + ( ) = − + ( )σ ξ ω     (47)

3.1  Modal identifi cation based on empirical mode 
        decomposition

Nagarajaiah and coworkers originally developed 
the EMD/HT modal identifi cation approach for tuning 
STMD in 2001 (Nagarajaiah and Varadarajan, 2001), 
based on their earlier work (Nagarajaiah et al., 1999) 
on variable stiffness systems. The advantage of this 
approach is that it is signal based and output only; 
hence, measured response at any one DOF can be used 
to make useful estimates of instantaneous frequency and 
damping ratio. However, the capability to estimate mode 
shape response signals at more degrees of freedom will 
be needed. Each signifi cant IMF component represents 
one modal component with unique instantaneous 
frequency and damping ratio.

Individual mode FRF and corresponding IRF can 
be extracted when band pass fi lters (Thrane, 1984) are 
applied to the system FRF. Equation (46) can be used to 
estimate damping in the kth mode, as suggested originally 
by Thrane in 1984 and adopted by Agneni in 1989. In 
2003, Yang and coworkers (Yang et al., 2003, 2004) 
extended this approach by using EMD/HT to decompose 
and obtain IMFs and perform modal identifi cation. In 
cases, when the inputs are white noise excitation and the 
output accelerations at a certain fl oor are available, the 
free vibration response from the stationary response to 
white noise can be obtained using the random decrement 
technique (Ibrahim, 1977) followed by instantaneous 
frequency and damping calculations.

The EMD/HT outlined below was developed 
independently by Nagarajaiah and coworkers 
(Nagarajaiah and Varadarajan, 2001): 

(1) Obtain signal xj(t), jth degree of freedom 
displacement of a MDOF system, from the feedback 
response.

(2) Decompose the signal xj(t) into its IMF 
components as described in Eqs. (29) and (25).

(3) Construct the analytical signal for each IMF/
modal component using Hilbert transform method 
described in Eq. (9).

(4) Obtain the phase angle of the analytic signal and 
then obtain the instantaneous frequency from Eq. (14).

(5) Obtain the log amplitude function of the 
analytic signal; perform least squares line fi t to the 
function (which will be a decreasing function fl uctuating 
about a line and not necessarily linear at all times). Then, 
using Eq. (47), compute the slope and damping ratio.

(6) The ratio of modal components at different 
degrees of freedom facilitate determination of mode 
shape.

(7)  In cases of output only modal identifi cation with 
ambient/random excitation, use the random decrement 
technique (Ibrahim, 1977) to obtain free vibration 
response.

3.2  Modal identifi cation based on STFT

After obtaining a spectrogram, a FRF at a given 
time can be extracted, and the individual mode FRF 
and corresponding IRF can be extracted when band 
pass fi lters (Thrane, 1984) are applied. The frequencies 
can be identifi ed by applying HT to the IRF as per Eq. 
(44). Equation (46) can be used to estimate damping in 
the kth mode, as suggested originally by Thrane in 1984 
and adopted by Agneni in 1989. The ratio of modal 
components at different degrees of freedom facilitate 
determination of mode shape. In cases of output only 
modal identifi cation with ambient/random excitation, 
the random decrement technique can be used to obtain 
the free vibration response.

4   Modal identifi cation of lTI and lTY systems 
     using wavelets

The wavelet function can be defi ned as 

  W x a b
a

x t t b
a

tψ ψ( )( ) = ( ) −⎛
⎝⎜

⎞
⎠⎟−∞

∞

∫, *1 d            (48)

where b is a translation indicating the locality, a is a 
dilation or scale parameter, ψ t( )  is an analyzing (basic) 
wavelet and ψ * ⋅( )  is the complex conjugate of ψ ⋅( ). 
Each value of the wavelet transform W x a bψ( )( ),  is 
normalized by the factor 1/ a . This normalization 
ensures that the integral energy given by each wavelet 
ψ a b t, ( )  is independent of the dilation a. The function   
ψ t( ) qualifi es for an analyzing wavelet, when it satisfi es 
the admissibility condition 

 Cψ

ψ ω

ω
ω=

( )⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

< ∞
−∞

∞

∫
2

d                (49)

where ψ ω( ) is the fourier transform of ψ t( ) . This 
is necessary for obtaining the inverse of the wavelet 
transform given by 

x t
C

W x a b
a

t b
a

a b
a

( ) = ( )( ) −⎛
⎝⎜

⎞
⎠⎟−∞

∞

−∞

∞

∫∫
1 1

2
ψ

ψ ψ, * d d
   (50)



590                                            EARTHQUAKE ENGINEERING AND ENGINEERING VIBRATION                                               Vol.8

The possibility of time-frequency localization arises 
from the ψ t( ) being a window function, which means 
that additionally 

  ψ t t( ) < ∞
−∞

∞

∫ d                           (51)

which follows from Eq. (45). One of the most widely 
used functions in wavelet analysis is the Morlet wavelet 
defi ned by 

  ψ t f t
t

( ) =
−

e ej2 20

2

π                          (52)

The Fourier spectrum of Morlet wavelet is a shifted 
Gaussian function 

ψ ( ) ( )f f f= − −2 2 2
0

2

π πe                      (53)

In practice, the value of f0 > 5 is used. The wavelet 
transform is a linear representation of a signal. Thus it 
follows that for a given N functions xi and  N complex 
values a i Ni ( , , , )= 1 2

( )( , ) ( )( , )W a x a b a W x a bi i
i

n

i i
i

n

ψ
= =
∑ ∑=

1 1
g       

(54)

The frequency localization is clearly seen when the 
wavelet transform is expressed in terms of the Fourier 
transform,

( )( , ) ( ) ( ),
*W x a b a X f af fa b

fb
ψ

πψ=
−∞

+∞

∫ e dj2       (55)

where ψ * ⋅( )  is the complex cojugate of ψ ⋅( ) . This 
localization depends on the dilation parameter a . The 
local resolution of the wavelet transform in time and 
frequency is determined by duration and bandwidth of 
the analyzing functions given by

Δ = Δ Δ = Δt a t f f aψ ψ, /                   (56)

where Δtψ  and Δfψ  are duration and bandwidth of the 
basic wavelet function, respectively. For the Morlet 
analyzing wavelet function, the relationship between the 

dilation parameter af and the signal frequency fx at which 
the analyzing wavelet function is focused, can be given as

a f
f
f ff

s

w x

= 0
1( )( )                       (57)

where fs and fw are the sampling frequencies of the signal 
and the analyzing wavelet, respectively. The frequency 
bandwidth of the wavelet function for the given dilation 
a can be obtained using a frequency representation of the 
Morlet wavelet and expressed as

Δ =f
a

f
fx

s

w

( )( )1
π

                         (58)

this allows one to obtain a single element of the wavelet 
decomposition of the function for a given value of 
frequency (dilation) and frequency bandwidth.

The wavelets are scaled to obtain a range of 
frequencies. They are also translated to provide the time 
information in the transform. The wavelet transform 
works as a fi lter, allowing only a certain time and 
frequency content through. Any given atom in the time-
frequency map of the wavelet transform (see Fig. 1) 
represents the correlation between the wavelet basis 
function at that frequency dilation and the signal in that 
time segment. The frequency content of the wavelet 
transform is represented in terms of scales, which are 
inversely related to frequencies. The squared amplitude 
of the continuous wavelet transform (CWT) is therefore 
called the scalogram. The relationship between scales 
and frequencies can be used to form a time-frequency 
map from the scalogram.

Since the wavelet works in a manner similar to the 
STFT, by convolving the signal with a function that 
varies in both time and frequency, it suffers from similar 
limitations in the resolution of the time-frequency 
map. Both transforms are confi ned by the uncertainty 
principle, which limits the area of a time-frequency 
atom in the overall time-frequency map (see Fig. 1). The 
biggest difference between the two transforms is that the 

Fig. 1   Comparing STFT and wavelet transform resolution in time and frequency domain

(0, 0) t

ω ω=ω0/a

b
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atoms in the WT map are not a constant shape. In the 
lower frequencies, the atoms are fatter, providing a better 
resolution in frequency and worse resolution in time, 
whereas in the upper frequencies the atoms are taller, 
providing better time resolution and worse frequency 
resolution. This variable resolution can be advantageous 
in the analysis of structural time response data.

The continuous wavelet transform gets its name 
from the fact that the Mother wavelet is continuously 
shifted across the length of the data being analyzed. This 
smooth shifting means that the time/frequency atoms 
shown in Fig. 1 will overlap one another, providing 
redundant information.

The variable windowing feature of wavelet analysis 
leads to an important property exhibiting constant Q 
factor (defi ned as the ratio of the center frequency 
to bandwidth) analysis. For STFT, at an analyzing 
frequency ω0, changing the window width will increase 
or decrease the number of cycles of ω0  inside the 
window. In the case of wavelet transforms, with the 
change in window width, mean dilation or compression 
of the wavelet function changes. Hence, the carrier 
frequency becomes  ω0 /a , for a window width changing 
from T to aT. However, the number of cycles inside the 
window remains constant.

The frequency resolution is proportional to the 
window width both in the case of STFT and wavelet 
transform. However, for wavelet transform, a center 
frequency shift necessarily accompanies a window width 
change (time scaling). Thus, Q-factor is invariant with 
respect to wavelet dilation and these dilated wavelets 
may be considered as constant-Q bandpass fi lters giving 
rise to the frequency selectivity of the CWT.

Since the wavelet transform is an alternative 
representation of a signal, it should retain the 
characteristics of the signal including the energy content 
in the signal. Thus, there should exist a similar relation 
to the Parseval’s theorem which provides the energy 
relationship in the Fourier domain. The total energy of a 
signal in wavelet domain representation is:

E
c

WT u s s u
sf

d d=
−∞

∞

−∞

∞

∫∫
1 2

2
ψ

( , )               (59)

where, Cψ  is a scalar constant related to the Fourier 
transform of the wavelet basis (called ‘admissibility 
constant’). The wavelet basis functions can be normalized 
in a way such that it can attain a value of unity. The 
differential energy of the signal in the differential 
tile of scale-translation plane in wavelet domain is 

WT u s s u
s

( , ) 2
2

d d
 
which leads to the construction of the 

scalogram.

4.1 Estimates of modal parameters in MDOF 
         systems

Since the analyzing wavelet function has compact 

support in the time and frequency domains, multi-
component signals can be written as 

( )( , ) ( ) ( )*W x x a b
a

x t t b
a

dti
i

N

t a t

t a t

i

N
ψ

ψ

ψ ψ
=

− Δ

+ Δ

=∑ ∫∑= −
1

1

1
    (60)

The response of an underdamped SDOF system can 
be expressed in the form

x t A t w tn( ) ( )= ± −e j 1 2ξ                        (61)

Assuming the envelope A(t) is slowly varying, it 
follows (Staszewski, 1997; Chakraborty et al., 2006) 

ln ( , ) ln( ( ) )*W x a b w b A a wn nψ ξ ψ ξ≈ − + ± −0 0
21j

 
(62)

Subsequently, the response of the MDOF system can 
be obtained as 

( ( , ) ( )*W x x a b A a wi
i

N

i
w b

i n i
i

N
i ni

iψ
ξ ψ ξ

=

−

=
∑ ∑≈ ± −

1

2

1
1e j (63)

Due to the compact support of the analyzing wavelet 
functions in time and frequency, the wavelet transform of 
each separate mode i N= 1 2, , , becomes (Staszewski, 
1997; Chakraborty et al., 2006) 

( )( , ) ( ) ( )*W x a b A b a wi
w b

i n i
i ni

iψ
ξ ψ ξ≈ ± −−e j 1 2

 
(64)

For the given value of dilation ai related to the natural 
frequency fni

 of the system, the modulus of the wavelet 
transform plotted in a semi-logarithmic scale leads to

ln ( )( , ) ln( ( ) )*W x a b w b A a wi i i n i i n ii iψ ξ ψ ξ≈ − + ± −j 1 2

(65)
and forms the basis of identifying the damping.

The derivations so far are general and are applicable 
to any continuous wavelet basis with desired or suitable 
time-frequency characteristics. The next subsection 
provides the details of a wavelet basis used for 
identifying the modal parameters of an MDOF system.

4.2   Modifi ed littlewood-paley (L-P) basis

An equivalent of the Harmonic wavelet, when the 
basis function is real, is the Littlewood-Paley wavelet. 
This wavelet basis function is defi ned by

ψ ( ) sin( ) sin( )t t t
t

= −1
2

4 2
π

π π               (66)

A possible variation of the wavelet is one which 
retains the characteristics of the basis function (close to 
transient vibration signals, i.e., oscillatory and decaying) 
but could reduce the frequency bandwidth of the mother 
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wavelet. Hence, the derived modifi ed wavelet is called 
the modifi ed L-P wavelet and has been proposed and 
used by Basu and Gupta (1999a, b). The shifted and 
scaled version of this is called the baby modifi ed L-P 
wavelets. This wavelet basis has also been used by Basu 
(2005, 2007) for damage detection in structures.

The modifi ed L-P basis function is defi ned by

ψ
σ

σ( ) sin( ) sin( )t t t
t

=
−

−1
1π

π π             (67)

where σ (is a scalar) >1. In the frequency domain, the 
wavelet basis can be represented by

ψ σ
ω σ

( ) ( )t = −
≤ ≤1

2 1
0
π

π π        

                          

for

eelsewhere

⎧
⎨
⎪

⎩
⎪

By choosing appropriate values for the bandwidth, 
the frequency content of the mother wavelet can be 
adjusted. If for numerical computation the scaling 
parameter is discretized as a j

j=σ  (in an exponential 
scale), then the scaled version of the mother basis 
function has mutually non-overlapping frequency 
bands and is also orthogonal. This property can be 
conveniently utilized to detect natural frequencies and 
modal properties for the dynamical systems as seen in 
the following sections.

4.3  Wavelet packets

While the constant Q-factor and coarser frequency 
resolution at high frequencies make the wavelet analysis 
computationally effi cient, this may be a disadvantage for 
analysis of some signals for system/modal identifi cation 
and structural health monitoring. Better resolution at 
high frequencies can be obtained by wavelet packet 
construction.

The discrete wavelet transform based on multi-
resolution analysis (MRA) splits the signal into two 
bands, a higher band (by using a high pass fi lter) and a 
lower band (by using a low pass fi lter). The lower band 
is subsequently again split in two bands. This concept 
can be generalized by splitting the signal into several 
bands each time. In addition, there could be further 
splitting of the higher bands too, not just the lower band. 
This generalization of MRA produces outputs called 
wavelet packets. This is a deviation from constant-Q 
analysis and achieves the desired frequency resolution at 
high frequency bands. Wavelet packets through arbitrary 
band splitting can choose the most suitable resolution to 
represent a signal.

The resolution of signals with wavelet packets is 
not only possible using MRA based frequency fi lters in 
the time domain (starting with Haar wavelets) but also 
in the frequency domain. For the arbitrary resolution 
using frequency domain based fi lters, the construction 

for wavelet packets should be based on a modifi ed 
Littlewood-Paley (L-P) wavelet basis. The application 
of wavelet packets is particularly useful in system 
identifi cation and damage detection for SHM, where 
fi ner resolution at higher frequency is desired.

4.4   Identifi cation of modal parameters

To detect the bands of frequencies in which the 
natural frequencies lie, the energy corresponding to each 
band is calculated for a particular state of response using 
equation 59. The bands, which do not contain the natural 
frequencies, lead to insignifi cant energy contribution. 
Hence, the fi rst ‘n’ bands with signifi cant energy content 
are the bands where the natural frequencies are located. 
These bands are in increasing order corresponding to the 
fi rst ‘n’ natural frequencies, i.e., the lowest frequency 
band has the fi rst natural frequency and so on.

However, the chosen bands may lead to bands 
with relatively broad intervals in which the natural 
frequencies lie. To refi ne the estimates into fi ner 
intervals, so that natural frequencies can be determined 
to a better precision, wavelet packets are used. This 
is an extension of wavelet transform to provide level 
by level time- frequency description and is easily 
adaptable for the modifi ed L-P basis. The wavelet 
packet enables extraction of information from signals 
with an arbitrary time-frequency resolution satisfying 
the product constraint in the time-frequency window. 
In this technique, to refi ne the estimation of the kth 
natural frequency, ωnk

, located in the jkth band, i.e., with 
frequency band π π/ , /a ajk jkσ⎡⎣ ⎤⎦ , further re-division is 
carried out. If it is required to further subdivide the band 
in 'M' parts, then again an exponential scale is used to 
divide the band so that the corresponding time domain 
function forms a wavelet basis function. In this approach 
(also sometimes, termed as sub-band coding), for theth 
band, the mother basis for the packet, ψ s t( )  is formed 
with the frequency domain description

ψ ω δ
ω δ

s ( ) ( )= −
≤ ≤1

2 1
0

π
π π       

                        

 for

   elsewhere

⎧
⎨
⎪

⎩
⎪

where δ σM =  [with σ  (a scalar) >1]. The corresponding 
time domain description is given by

ψ
δ

δs t t t
t

( )
( )

sin( ) sin( )=
−

−1
1π

π π
           (68)

The frequency band for the pth sub-band within the 
original jkth band is the interval [ / , / ]δ δp

jk
p

jka a−1π π . 
The basis function for this is denoted by ψ a bjk

t, ( )sp . 
The wavelet coeffi cient in this sub-band is denoted by 
W x a bm jkψ sp ( , ) . Using the wavelet coeffi cients in these sub-
bands and then applying similar expression as in Eq. (59)
to estimate the relative energies in the sub-bands, the 
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natural frequencies can be obtained more precisely.
Once the natural frequencies are obtained and 

the corresponding bands are identifi ed, the following 
expression corresponding to the sub-band containing 
the kth natural frequency with scale parameter  jk and the 
sub-band parameter ‘p’ is considered to obtain the kth 
mode shape. 

W x a b W a b i Ni j i
k

jk
k

N

ψ ψ( , ) ( , ); , , ,= =
−

∑ΦΦ 1 2
1

       (69)

Considering the response or two states or DOF 
in a MDOF system, (with one arbitrarily chosen as 
i = 1, without loss of generality), the ratio of wavelet 
coeffi cients of the two considered degrees of freedom at 
any instant of time t = b, corresponding to band jk 

= =∏m

jk i jk

jk

m
k

k

W x a b
W x a b

ψ

ψ

( , )
( , )1 1

ΦΦ
ΦΦ

                 (70)

Thus it is seen that the computed ratio of the wavelet 
coeffi cients are invariant with “b”. These ratios for 
different states corresponding to different values of “m” 
and assuming ΦΦ1 1j =   (without loss of generality), the 
mode shape for the kth mode (in jk band with further sub-
band division) can be obtained as 

ΦΦm
k

m

jk m N= =∏ , , , ,1 2              (71)

4.5  Wavelet based online monitoring of LTV systems 
       with stiffness changes

Consider a linear time varying multi-degree-of-
freedom (MDOF) system with m degrees of freedom 
represented by the set of linear time varying ordinary 
differential equations with M, C(t) and K(t) as the 
mass, time varying damping and time varying stiffness 
matrices, respectively. The displacement response 
vector is denoted by X ( ) ( ) ( ) ( )t x t x t x tm= { }1 2

T . Let 
us assume that the functions K t i j mij ( ); , = 1 in the 
stiffness matrix have discontinuities at a fi nite number 
of points. It is then possible to divide the time in several 
segments with indices arranged as t t t tn0 1 2< < < <
such that all K t i j mij ( ); , = 1 are continuous functions 
in t ti i−[ ]1, . Further, it is assumed that the variation of 
all the time varying stiffness functionsare K tij ( )  slower 
than the fundamental (lowest) frequency of the system 
(corresponding to the longest period). It subsequently 
follows that the variation of X(t) may be represented 
with a slowly varying amplitude ΦΦm

k and a slowly 
varying frequency ωki t( ) at the kth mode, in the time 
interval t ti i−[ ]1, .

The modifi ed L–P function has been used as the 
wavelet basis for analysis for this problem and the basis 
is characterized by the Fourier transform 
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ω σ

( ) ( )t F
F F

= −
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⎩
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where, F1 is the initial cut off frequency of the mother 
wavelet. If this modifi ed L–P basis function is used, then
ψ ω( )a j is supported over σF a F aj j1 1/ , /⎡⎣ ⎤⎦ . It follows 
that if ωki

b( ) corresponding to the kth mode is in the 
jkth band, i.e., ωk j jki

b F a F a( ) / , /∈ ⎡⎣ ⎤⎦1 1 ,  then it can be 
approximated as 

ω ω
σ

k
jk

i jk
b

a
( ) ≈ = + ⋅0

1
2

π                   (72)

for a lightly damped system (with ηk = 1 ), where 
ω0 jk is the central frequency of the jkth band. Let the 
parameters, ω1i

b( ) ,ω2i
b( ) ,... ωmi

b( ) , be contained in 
the bands with scale parameters identifi ed by indices, 
respectively. Since, the response, zk(t) in the kth mode, 
i.e., in jkth band is narrow banded with frequency around 

F a F aj jk1 1/ , /⎡⎣ ⎤⎦ , it follows that the bands not containing 
the natural frequency have insignifi cant energy which 
leads to the approximation 

W z a b if j j k mj k j kψ ( , ) ; , ,≈ ≠ =0 1 2              (73)

Thus, the 'm' bands with the 'm' natural frequency 
parameters ω ki b k m( ); , , = 1 2  correspond to m local 
maxima in the variation of temporal energy, E x bj r ( )  [or 

its proportional quantity ( / ) ( )1
2

a W x b bj j rb

b

ψε

ε

−

+

∫ d ] (with 

the integral over b – ε to b + ε for the windowed data 
in case of online identifi cation) with different values 
of the band parameter 'j'. It may be noted that since the 
wavelet basis is localized in time, the integral over the 
window is acceptable with the parameter ε is dependent 
on the frequency scale corresponding to j. If the forcing 
function is assumed to be described by a broad banded 
excitation, then by calculating the relative energies in 
different bands and comparing, it may be concluded 
that 

E x b E x b E x b j j mj r j r j r k− +< > ∀ =1 1( ) ( ) ( ); ;         =1,2, ,k
(74)

if the modes are not too closely spaced. Once these bands 
are detected, the parameters ωki

b( ) can be obtained as 

ω
σ

k
jk

i
b F

a
k m( ) ; , , ,≈ + ⋅ =1

2
1 21               (75)

over the interval b b− +[ ]ε ε, . The sub-band coding 
with wavelet packets could be applied if the parameters
ωki

b( ) are desired to be obtained with better precision. 
Once the bands corresponding to the 'm' modes with 
the parameters ωki

b( )  are obtained, the time varying 
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mode shapes ΦΦ ( )t j

k{ } can be found by considering the 
wavelet coeffi cients of xr(t) with the scale parameters, 
jk and sub-band parameter p (for wavelet packets). 
Now, considering two different states of response of the 
MDOF system with one considered as r = 1 (without the 
loss of generality), the ratio of wavelet coeffi cients of the 
considered states at the time instant t = b, gives the rth 
component of the time varying kth mode as 

πr
jk r jk

jk

j
k

kb
W x a b

W x a b
b
b

( )
( , )

( , )
( )
( )

= =ψ

ψ

sp

sp 1 1

Φ
Φ

             (76)

5  Experimental and numerical validation of 
modal identifi cation of LTI and LTV 
systems using STFT, EMD, wavelets and 
HT

5.1 Modal identifi cation of 1:10 scale three story 
       model using free vibration test results and STFT

The 1:10 scale three story model with a total weight 
of 1000 lbs, shown in Fig. 2, is used for the modal 
identifi cation study based on the proposed STFT and 
EMD/HT algorithm. Time axis is scaled by from the 
prototype scale for this study. Measured third fl oor free 
vibration displacement response, shown in Fig. 2, is 
used for output only modal identifi cation. Tests were 
also performed with white noise excitation and the FRF 
was estimated—for further details refer to Nagarajaiah 
(2009). The identifi ed frequencies of the 3DOF structure, 
both from free vibration (output only) as well as forced 
vibration tests (input-output), are 5.5 Hz, 18.7 Hz, and 
34 Hz for the three modes, respectively. The identifi ed 
damping ratios are approximately 1.9%, 1.7% and 1.1% 
in the three modes, respectively, as shown in Table 1. At 
the prototype scale, the three modal frequencies are 1.75 
Hz, 5.9 Hz and 10.7 Hz, respectively.

STFT is applied to the free vibration displacement 
response of the three story scaled building model. 
Figure 3 shows the time history (lower right), 
frequency spectrum (upper left), and the time-
frequency spectrogram (upper right). The evolution of 
the frequency content of the displacement signal as a 
function of time can be seen in the spectrogram or time-
frequency distribution (upper right), shown in Fig. 3. If 
one examines the time history alone (lower right) the 

localized nature of the time varying frequency content 
is not evident. The modal free vibration response in the 
three separate modes and the time localization for each 
mode is clearly evident in the spectrogram, but not in the 
frequency spectrum or the time history—when examined 
independently. The three modal frequencies 5.5 Hz, 18.7 
Hz and 34 Hz (Nagarajaiah, 2009) are clearly evident in 
the spectrogram and the frequency spectrum (upper left) 
shown in Fig. 3. After the STFT spectrogram reveals 
the modal frequencies, further processing is essential 
using band-pass fi ltering to obtain modal components 
as described in Section 3.2. Next, the EMD/HT and 
wavelet/HT based methods are presented which can 
accomplish output only modal identifi cation without the 
use of band-pass fi lters.

5.2 Validation of EMD/HT technique using three 
       story model free vibration test results

The three story scaled model, with the fi rst mode 
frequency of 5.5 Hz, is subjected to free vibration tests. 
The measured third fl oor free vibration acceleration 
response signal (we use the acceleration signal since the 
third mode is dominant, while in the displacement signal 
it is not dominant) is then analyzed using EMD/HT to 
extract instantaneous frequency and damping ratios of 

Fig. 2   Three story 1:10 scale building model

Table 1   Frequencies and damping ratios estimated using EMD/HT

Mode

Free vibration tests White noise tests
Identifi ed 
frequency

 (Hz)

Identifi ed 
damping ratio 

(%)

Identifi ed 
frequency

 (Hz)

Identifi ed 
damping ratio 

(%)
1 5.5 1.9 5.5 1.5
2 18.7 1.0 18.7 1.0
3 34 1.1 33.7 1.0
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the three modes as per the procedure described earlier in 
Section 3.2. The free vibration acceleration response of 
the third fl oor is shown in Fig. 4. The fi rst three modes 
are not clearly evident in the time history as all three 
modes are present simultaneously and decay at different 
rates; hence, the need for time-frequency analysis exists 
to understand localization.

The EMD method is capable of extracting all the 
three vibration frequencies and damping ratios from a 
single measurement of the acceleration response time 
history based on the procedure outlined in Section 
3.1. The third fl oor acceleration is decomposed into 
IMFs; the fi rst three are shown in Fig. 5 and the rest 
are discarded as they are small and below the threshold. 
Based on the modal identifi cation procedure presented 
in Section 3.1, modal frequencies and damping ratios 
are identifi ed using linear least squares fi t applied to the 
Hilbert Transform; log amplitude and phase (Eqs. 14, 
43-47) of HT of IMF3 is shown in Fig. 6. The modal 
frequencies and damping ratios obtained are shown in 
Table 1. 

IMFs of all three fl oor accelerations are obtained. 

Magnitude/phase information of IMF3 of the three 
fl oor accelerations at a particular time, provides the fi rst 
mode. Similarly second and third modes are obtained. 
The identifi ed mode shapes (scaled to maximum of 1) 
are shown in Table 2. The analytical mode shapes are 
shown in Table 3. The EMD results are in agreement 
with the analytical results.

5.3 Validation of wavelet/HT technique using three 
       story model free vibration test results

The three story scaled model is subjected to free 
vibration tests. The measured third fl oor free vibration 
displacement response signal is then analyzed using 
wavelets to extract instantaneous frequency and damping 
ratios of the three modes as per the procedure described 
in Section 4. The scalogram of the free vibration 
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displacement response of the third fl oor is shown in 
Fig. 7 and relevant wavelet coeffi cients of the measured 
free vibration displacement response of all three fl oors 
and modes are shown in Fig. 8 (the wavelet coeffi cients 
have been normalized to have a peak value of 1 in mode 
1). All three modes and their decrement as a function 
of time are clearly evident in Figs. 7 and 8. The modal 
frequencies and damping ratios are identifi ed using 

linear least squares fi t applied to the Hilbert transform; 
log amplitude and phase (Eqs. (14), (43)–(47)) of HT of 
wavelet coeffi cient corresponding to mode 1 (Fig. 8 top) 
is shown in Fig. 9. The modal frequencies obtained are 
5.5 Hz, 18.8 Hz, and 34 Hz, and the damping ratio of the 
fi rst mode is estimated to be 1.9%; however, the damping 
in mode two and three are underestimated at 0.08%, as 
compared to the values shown in Table 1. Wavelet 
coeffi cients of all three fl oor displacements, shown in 
Fig. 8, are used to obtain the mode shapes. Magnitude/
phase information of wavelet coeffi cients of the three 
fl oor displacements at a particular time provides the fi rst 
mode. The ratio of the wavelet coeffi cients shown in Fig. 8 
remain nearly constant as a function of time. Similarly, 
the second and third modes are obtained.

The identifi ed mode shapes (scaled to maximum of 
1) are shown in Table 4. The analytical mode shapes are 
shown in Table 3. The wavelet results are in agreement 
with the analyatical results.

5.4 Validation of wavelet technique using numerical 
      simulation of a 5DOF LTI system

A MDOF model is used to simulate the displacement 

Table 2   Mode shapes estimated using EMD

    Mode-1  Mode-2  Mode-3 
Storey-3  1.0000  -0.7025  -0.3787 
Storey-2  0.6976  0.3265  1.0000 
Storey-1  0.4696  1.0000  -0.6185 

Table 3   Analytical mode shapes

    Mode-1  Mode-2  Mode-3 
Storey-3  1.0000  -0.6416  -0.3946 
Storey-2  0.6438  0.4299  1.0000 
Storey-1  0.3648  1.0000  -0.6831 

Fig. 9   First mode damping and frequency estimation using wavelet coeffi cient/Hilbert transform
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response and to show the application of the proposed 
identifi cation methodology. The MDOF system, as 
shown in Fig. 10, is considered. The displacement of the 
mass relative to the support is denoted xi(t). Simulation 
is carried out for a 5DOF system (n = 5). The masses are 
m1= 300 kg, m2= 200 kg, m3= 200 kg, m4= 250 kg and 
m5= 350 kg; and the spring stiffnesses are k1= 36 kN/m, 
k2= 24 kN/m, k3= 36 kN/m, k4= 20 kN/mm and k5= 
15kN/mm respectively. The damping ratio is assumed to 
be 5% for all modes. The system is subjected to initial 
displacement of x ii ( ) , , ,0 1 1 5= = for all the degrees of 
freedom. Using these, the ambient vibration response is 
simulated.

Table 4   Mode shapes estimated using wavelets

Mode-1 Mode-2 Mode-3
Storey-3 1.0000 -0.6930 -0.3247
Storey-2 0.6437 0.4106 1.0000
Storey-1 0.3647 1.0000 -0.7475

Fig. 10   MDOF system
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kn
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A modifi ed L-P wavelet is used to decompose 
the signals into different frequency levels. Initially, 
the response energy is calculated for each degree of 
freedom in frequency bands with σ = 21 4/ to broadly 
identify the bands that contain the natural frequencies. 
These bands are further divided into sub-bands using 
wavelet packets. Figures 8 and 10 represent the ratio of 
wavelet coeffi cients of displacements x t ii ( ), , ,= 2 5  
with respect to the wavelet coeffi cients of displacement 
x1(t) over time for the fi ve frequency sub-bands 
containing the fi ve natural frequencies, respectively. 
Since the response for different degrees of freedom 
attain the same phase during modal vibration, these 
ratios are practically constant over time. The natural 
frequencies are estimated as the central frequency of 
the corresponding sub-bands and the corresponding 
mode shapes are obtained by averaging the ratios. The 
results for the fi rst two modes are shown in Figs. 11 and 
12 using sub-band coding as discussed in Section 4. 
The results are summarized in Table 5. Figures 13 and 
14 show the mode shapes estimated using the proposed 
method and compared with the actual for the fi rst three 
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modes, respectively. From Figs. 13 and 14 and Table 5, 
it can be noticed that the modal frequencies along with 
other modal parameters are estimated satisfactorily, 
which proves the effectiveness of the proposed method.

Although the ratios of wavelet coeffi cients for higher 
modes are constant over time, the accuracy in estimation 
reduces for the higher modes. This is due to the fact that 
the energy content in bands containing the higher modal 
frequencies reduces as the mode number increases.

For the 5DOF system, the estimation accuracies 
start deteriorating from the third mode onwards and are 
poorer for the last two modes. This indicates that more 
numbers of modes and the associated modal properties 
can be identifi ed with greater accuracy, for systems with 
relatively greater number of degrees of freedom. Also, 
modal damping ratios can be estimated with reasonable 
accuracy, with the level of accuracy deteriorates with 
higher modes. The higher modal damping ratios tend to 
be underestimated.

5.5 Validation of wavelet technique using numerical 
       simulation of a 2DOF LTV system

To demonstrate the application of the tracking 
methodology, an example of a 2DOF system has been 
considered. The system considered is a shear-building 
model. The masses at the fi rst and second fl oors are 
m1=10 unit and m2=10 unit, respectively. The fl oor 
stiffness for the fi rst and second fl oor are k1=2500 unit 
and k2=4500 unit, respectively. These parameters lead 
to the fi rst and second natural frequencies, of ω1=9.04 
rad/s and ω2=30.30 rad/s, respectively. The fi rst and 
second mode shapes are Φ Φ11 21 1 1 137, .{ } = { }   and 
Φ Φ12 22 1 0 048, .{ } = −{ }  , respectively. A band limited 

white noise excitation has been simulated. The range of 
frequencies is kept wide enough to cover the frequencies 
of the system to be identifi ed. The excitation has been 
digitally simulated at a time step of Δ =t 0 0104. s. 
The response of the system is simulated with 5% of 

Fig. 13   First mode shape
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Table 6   Third mode shape estimated using wavelets

3*Mode

Normalized mode shape

x1

x2 x2 x3 x3 x4 x4 x5 x5

Actual Estimated Actual Estimated Actual Estimated Actual Estimated
1 1.00 2.40 2.37 3.22 3.18 4.45 4.39 5.48 5.39
2 1.00 1.76 1.73 1.69 1.66 0.56 0.69 -1.49 -1.58
3 1.00 0.59 0.89 -0.18 -0.59 -1.30 -1.02 0.51 0.63

Fig. 14   Second mode shape
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Table 5   Second mode shape estimated using wavelets

2*Mode
Natural frequency (rad/s) Damping ratio (%)

Actual Estimated Actual Estimated
1 2.84 2.88 0.05 0.04
2 7.69 7.69 0.05 0.03
3 12.35 12.59 0.05 0.02
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Fig. 15   Time varying fi rst modal frequency
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Fig. 16   Time varying fi rst mode shape
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Fig. 17   Time varying frequency
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modal damping. For the frequency-tracking algorithm, 
a moving window of 400 time steps equal to 4.16 s 
has been chosen. For the identifi cation of the 2DOF 
system, the parameters F1 and σ are taken as 8.25rad/s 
and 1.2, respectively. To observe if the proposed method 
can track a sudden change in the stiffness of an MDOF 
system and follow the recovery to the original stiffness 
value(s), the stiffness k1 and k2 of the 2DOF are changed 
to 5000 unit and 5200 unit, respectively, at an instant of 
5.72 s in time. Subsequently, the stiffnesses are restored 
to their original value at 12.48 s. During the changed 
phase, the natural frequencies and the mode shapes 
are changed to ω1=11.57 rad/s; ω2=35.11 rad/s; and 
Φ Φ11 21 1 1 157, .{ } = { }t   ; Φ Φ12 22 1 0 048, .{ } = −{ }t   . 

Figures 15 and 16 show the tracked fi rst natural 
frequency and the ratio of the fi rst mode shape Φ Φ21 11 . 
As expected, there is a time lag in tracking the frequency 
and mode shape. The change in the frequency is tracked 
in (three) steps corresponding to the bands of frequencies 
considered. To investigate if a relatively small change 

in stiffness can be tracked, a case where the natural 
frequency of a SDOF representing the fi rst mode only 
changes from 9 rad/s to 9.5 rad/s is considered and the 
results for successful tracking are shown in Fig. 17 with 
a window width of 200 sampling points corresponding 
to a time delay of 2.08 s. For this, the parameters F1 
and σ are taken as 8.9 rad/s and 1.02, respectively. This 
indicates that the minimum change in stiffness that can 
be tracked is related to the value of σ, and to identify a 
small change a relatively smaller value will be required. 

5.6 Validation of wavelet & random decrement 
technique using three story model test results 
under white noise excitation: the case of 
structural damage detection

The three story scaled model was damaged 
intentionally to simulate structural deterioration 
(Nagarajaiah, 2009). The model was subjected to white 
noise tests before and after the structural damage. We 
choose 10 s of the measured acceleration record before 
damage and 10 s of the measured acceleration after 
damage. The measured third fl oor acceleration response 
signal is shown in Fig. 18, and the corresponding 
Fourier spectrum is shown in Fig. 19. From the 
Fourier spectrum, the fi rst mode frequency evident 
is ~5.5 Hz, second mode frequency at ~18.8 Hz and 
third mode frequency at ~34 Hz. The lower fi rst mode 
frequency after damage is evident. The scalogram of 
the acceleration response of the third fl oor is shown in 
Fig. 20 and relevant scaled wavelet coeffi cients of the 
measured third fl oor acceleration response are shown in 
Fig. 21. The fi rst two wavelet coeffi cent time histories in 
Fig. 21 are the most interesting as they correspond to the 
fi rst mode frequencies of 4.9 Hz (after damage) and 5.5 
Hz (before damage). The fi rst two wavelet coeffi cients 
in Fig. 21 detect the loss of stiffness at 10 s, as evident 
in the signifi cant change at 10 s in both coeffi cients. The 
third and fourth time histories in Fig. 21 correspond to 
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Fig. 19   Fourier spectrum of third fl oor acceleration
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Fig. 20   Scalogram of third fl oor acceleration response: note 
the shift in the fi rst mode frequency (ridge) of 5.5 Hz 
to 4.9 Hz after 10 s due to damage
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Fig. 21   Wavelet coeffi cients of the measured third fl oor 
                    acceleration response
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coeffi cient/Hilbert transform (note the change in 
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the second and third mode, respectively. Even the second 
mode response reduces at 10 s, although the frequency 
of the second mode does not change signifi cantly. The 

third mode response does not indicate any change.
The modal frequency of the second wavelet 

coeffi cient in Fig. 21(b) is estimated using linear 
least squares fi t applied to the Hilbert Transform; log 
amplitude and phase (Eqs. (14), (43)–(47)) of HT of 
the second wavelet coeffi cient corresponding to mode 
1 before damage (Fig. 21(b)) is shown in Fig. 22. The 
change in frequency is clearly detected at 10 s; the 
frequency is ~5.5 Hz prior to damage and ~4.9 Hz after 
damage. 

The fi rst two wavelet coeffi cient time histories in 
Fig. 21 are processed further to extract the free vibration 
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response using the random decrement technique. The 
third fl oor acceleration free vibration time history 
obtained from the random decrement technique before 
damage is shown in Fig. 23; also shown is the frequency 
estimation using HT—the estimated fi rst mode 
frequency before damage is ~5.5 Hz. The third fl oor 
acceleration free vibration time history obtained from 
the random decrement technique after damage is shown 
in Fig. 24; also shown is the frequency estimation using 
HT—the estimated fi rst mode frequency after damage 
is ~4.9 Hz. Damping ratios and mode shapes can be 
obtained as described in Section 4 (not shown due to 
space limitations).

5.7 Three story model test results under white noise 
excitation: STFT and EMD for structural 
damage detection

The third fl oor acceleration response was processed 
to white noise excitation using STFT and EMD. The 
spectrogram is shown in Fig. 25. The spectrogram 
detects the change in frequency from 5.5Hz to 4.9 Hz at 
10 s. However, the fi xed time-frequency resolution is a 
limitation that prevents robust detection when compared 
to the variable resolution of wavelets that enables more 
robust detection. In addition estimation of frequencies, 
damping ratios, and mode shapes would require further 
processing using band-pass fi ltering and Hilter transform 
apporach as described earlier in Section 3. 

The third fl oor acceleration response was processed 
to white noise excitation using EMD. The IMFs are 
shown in Fig. 26. The IMFs do detect change at 10 s
—particularly the IMF3 for the fi rst mode before 
damage at 5.5 Hz; however, the detection is not as 
robust as in the case of the wavelet coeffi cients shown in
Fig. 21. 
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6   Conclusions

The effectiveness of the developed time-frequency 
algorithms for output only modal identifi cation of 
MDOF LTI and LTV systems has been demonstrated 
by simulated and experimental results. The algorithms 
presented demonstrate the powerful capabilities of time-
frequency methods for output only modal identifi cation 
and ease of implementation. 

The STFT, EMD and wavelet, HT algorithms 
applied to MDOF LTI and LTV systems offer different 
advantages and limitations that can be summarized as 
follows.

(1)  STFT based identifi cation technique presented 
can detect the modal frequencies of LTI systems and 
their time localization very well; however, further 
processing using band-pass fi ltering is essential to obtain 
frequencies, damping ratios, and mode shapes. STFT can 
also detect changes in modal frequency of LTV systems 
due to structural damage. However, the fi xed time-
frequency resolution is a limitation that prevents robust 
detection when compared to the variable resolution of 
wavelets that enables more robust detection.

(2) The EMD based identifi cation technique 
presented is capable of decomposing the free vibration 
or force vibration output signal into its individual 
modal components—represented by individual IMFs. 
Frequencies, damping ratios, and mode shapes of LTI 
systems can be obtained using the IMFs and the Hilbert 
transform approach. In case of ambient response, the 
random decrement technique can be used to obtain the 
free vibration response, followed by the application of 
EMD/HT for modal identifi cation. The EMD technique 

is capable of detecting changes in frequency of LTV 
systems due to structural damage; however, the detection 
may not be as robust as wavelets.

(3) The wavelet based identifi cation technique 
presented is capable of extracting the modal components 
represented by wavelet coeffi cients obtained from 
the free vibration or forced vibration output response 
signals. Frequencies, damping ratios, and mode shapes 
of LTI and LTV systems can be obtained using wavelet 
coeffi cients and the Hilbert transform approach. In case 
of ambient response, the random decrement technique 
can be used to obtain the free vibration response, 
followed by the application of wavelet/HT for modal 
identifi cation. The wavelet technique is very effective 
in detecting changes in frequency of LTV systems due 
to structural damage. The wavelet technique can also 
detect closely spaced modal frequencies and detect real 
time changes in frequencies and mode shapes of LTV 
systems.
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