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SUMMARY

The increased size and flexibility of modern multi-Megawatt wind turbines has resulted in the dynamic
behaviour of these structures becoming an important design consideration. The aim of this paper is to
study the variation in natural frequency of wind turbine blades due to centrifugal stiffening and the
potential use of semi-active tuned mass dampers (STMDs) in reducing vibrations in the flapwise direction
with changing parameters in the turbine. The parameters considered were the rotational speed of the blades
and the stiffness of the blades and nacelle. Two techniques have been employed to determine the natural
frequency of a rotating blade. The first employs the Frobenius method to a rotating Bernoulli-Euler beam.
These results are compared with the natural frequencies determined from an eigenvalue analysis of the
dynamic model of the turbine including nacelle motion, which is developed in this paper. The model
derived considers the structural dynamics of the turbine and includes the dynamic coupling between the
blades and tower. The semi-active control system developed employs a frequency-tracking algorithm based
on the short-time Fourier transform technique. This is used to continually tune the dampers to the
dominant frequencies of the system. Numerical simulations have been carried out to study the effectiveness
of the STMDs in reducing flapwise vibrations in the system when variations occur in certain parameters of
the turbine. Steady and turbulent wind loading has been considered. Copyright r 2010 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

Wind turbines with outputs as large as 5MW are being constructed with tower heights and rotor
diameters of over 80 and 120m, respectively. As a result of the increasing size of the turbine
components, the blades are becoming the limiting factor towards larger and even more powerful
turbines. Significant research has already been carried out into the dynamic behaviour of wind
turbines. Rauh and Peinke [1] developed a model to study their dynamic response. Tavner et al.
[2] performed a study into the reliability of large wind turbines. They noted that the installation
of turbines in more remote locations, particularly offshore gives rise to the need for more
accurate reliability analysis so that wind turbine availability and design life can be predicted.
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With the increased size of the turbine blades comes increased flexibility making it important
to understand their dynamic behaviour. Sutherland [3] studied the fatigue properties of the
different materials used in wind turbines from the steel in the tower to the composites used in
blade design. Ahlstrom [4] carried out research into the effect of increased flexibility in turbine
blades and found that it can lead to a significant drop in the power output of the turbine.
Considerable research has been carried out into the area of blade design and their failure
characteristics [5–7]. However, it is only during the last few years that research has started to
focus on the dynamic behaviour of the turbine blades and the dynamic interaction that occurs
between the blades and the tower.

Two main types of vibration occur in wind turbine blades, flapwise and edgewise. Flapwise
vibrations are vibrations occurring out of the plane of rotation of the blades, whereas edgewise
vibrations occur in the plane of rotation. Flapwise vibration is similar in nature to the
phenomenon of fluttering in aircraft wings, and in extreme cases it has lead to the turbine blades
colliding with the tower resulting in catastrophic failure of the structure. Ronold and Larsen [8]
studied the failure of a wind turbine blade in flapwise bending during normal operating
conditions of the turbine. Murtagh and Basu [9] studied the flapwise motion of wind turbine
blades and included their dynamic interaction with the tower. They found that inclusion of the
blade–tower interaction could lead to significant increases in the maximum blade tip
displacement.

Efforts to mitigate the increased vibration problems that are occurring in wind turbine blades
have thus far concentrated on the actual design of the blades themselves. This has focused on
attempting to increase the structural damping present in them or alter their aerodynamic
properties [10,11]. The possibility of using dampers in the blades to control their dynamic
behaviour has not yet been investigated in detail.

Vibration mitigating devices have been used in engineering systems for many decades, tuned
mass dampers (TMDs) being one of the first types. TMDs consist of a mass connected by
springs and dashpots to the primary structure. Passive TMDs have been used widely throughout
civil engineering applications, particularly in tall buildings subjected to wind or earthquake
loadings. One of the first buildings to have a TMD installed was the John Hancock Building in
Boston, details of which can be found in Kwok and Samali [12]. Extensive research has been
carried out into the use of passive TMDs and their suitability for vibration control. Hijmissen
and Van Horssen [13] investigated the wind-induced vibrations of a tall building, modelled as a
vertical Euler-Bernoulli beam. They found that the addition of a TMD at the top of the beam
successfully reduced the response. Chang [14] compared the effectiveness of a TMD to other
vibration mitigating devices, such as tuned liquid dampers. Furthermore, Kareem and Kline [15]
studied the performance of multiple TMDs (MTMDs) under random excitation, while Li and
Ni [16] looked at the optimization of a MTMD system.

The non-linearity of nearly all engineering dynamical systems has raised the need for semi-
active TMDs (STMDs) due to their ability to adjust their tuning to cater for changes in the
behaviour of the primary system. Semi-active devices are more desirable than active as they
require significantly less power and are therefore more cost effective. Pinkaew and Fujino [17]
looked at the use of STMDs for vibration mitigation in structures excited by harmonic loads.
Nagarajaiah and Varadarajan [18], Nagarajaiah and Sonmez [19], and Nagarajaiah [20] have
developed algorithms to track the dominant frequencies of the system using short-time Fourier
transforms (STFT). This allowed the STMD to be continually tuned to the dominant frequency
of the structure resulting in a more effective reduction in response.

The aim of this paper is to investigate the effectiveness of STMDs in the vibration control of
wind turbine blades. Investigation into the natural frequencies of rotating blades is also
considered for different rotational speeds. Two techniques have been employed for comparison.
The first considers the natural frequencies of a rotating Bernoulli-Euler cantilever beam using
the Frobenius method. This is then compared with the frequencies obtained from an eigenvalue
analysis of the turbine model developed in this paper.

The hollow nature of wind turbine blades makes them naturally suitable for the use of
internal damping devices. However, thus far, little work has been carried out investigating this
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possibility. Most of the current research into the dynamic behaviour of wind turbine blades has
focused on aerodynamic models of the blades themselves. The model developed in this paper
looks purely at the structural dynamics of the turbine including the blade–tower interaction.
Flapwise vibration only has been considered.

The model presented consists of three rotating cantilever beams (representing the turbine
blades) connected at their root to a large mass (which models the nacelle) allowing the inclusion
of blade–tower interaction. The masses, lengths, natural frequencies etc. were chosen to
replicate those of a real wind turbine to accurately capture the dynamic interaction between the
blades and nacelle. An STMD was connected to each blade tip and to the nacelle. This gave the
completed model including STMDs a total of 8 degrees of freedom (DOF). Steady and
turbulent wind loading was applied to the model acting in the flapwise direction.

2. ANALYSIS FOR CALCULATION OF NATURAL FREQUENCIES

2.1. Determination of blade natural frequencies using Frobenius method

The governing differential equation for a rotating Euler Bernoulli beam with rigid support
under flapwise vibration is
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where r is the density of the beam (taken as 1300 kg/m3 for a flexible blade), A is the cross-
sectional area, w is the relative displacement of a point with respect to its static deflected
position, E is the Young’s modulus of elasticity of the material of the beam, I is the moment of
inertia of the beam about its relevant axis, T is the centrifugal tension force on the beam at a
point x with respect to the origin and f is the applied force per unit length on the beam. The
cross-sectional area, A, and bending rigidity, EI, are assumed to be constant along the length of
the beam. Both w and f are dependant on the location on the beam with respect to the origin, x,
and time, t. The centrifugal tension T is expressed as

T ðxÞ ¼
Z L

x
rAO2ðr1xÞdx ð2Þ

where L is the length of the beam, r is the radius of the rigid hub to which the flexible beam is
attached and O is the angular velocity of rotation of the beam, which is assumed to be constant.
The effect of gravity on the rotation of the beam is assumed negligible compared with the
centrifugal effect.

The non-dimensional rotational speed parameter and natural frequency parameters are
defined as

n ¼ Z2 ¼
rAO2L4

EI
ð3Þ

and
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respectively, where o is the natural frequency of the beam. After setting f(x,t)5 0 in
Equation (1), substituting in the non-dimensional parameters, and separating the time- and
space-dependant ordinary differential equations, the modeshape equation is obtained in a
dimensionless form as
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Employing the Frobenius method of series solution of differential equations as in [21] and
considering ideal clamped-free boundary conditions for a cantilever, the natural frequency
equation is obtained to be

D2F ð1; 2ÞD3F ð1; 3Þ � D3F ð1; 2ÞD2F ð1; 3Þ ¼ 0 ð7Þ

where

F ðX ; cÞ ¼
X
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and c is an undetermined exponent.
By choosing
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the recurrence relation is obtained as
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The normalized modeshape equation can be derived as
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It is important to note that for an Euler Bernoulli rotating beam with doubly symmetric
cross-section, it can be shown that the in-plane and out-of-plane vibrations are uncoupled and
the respective natural frequencies differ by a constant equal to the square of the non-
dimensional rotational speed. This paper considers only the out-of-plane or flapwise vibrations.
The results obtained using the Frobenius technique are discussed later in the paper. The
formulation does not consider the motion of the nacelle at the base of the blade.

3. LAGRANGIAN FORMULATION

3.1. Dynamic model including nacelle motion

The dynamic model was formulated using the Lagrangian formulation expressed in Equation
(12) below

d
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dT
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where T is the kinetic energy of the system, V is the potential energy of the system, qi is the
displacement of the generalized DOF i and Qi is the generalized loading for DOF i. The kinetic
and potential energies of the model were first derived including the motion of the nacelle and are
stated in Equations (13a) and (13b). These expressions were then substituted back into the
Lagrangian formulation in Equation (12) to allow the equations of motion to be determined.
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where �m is the mass per unit length of the blade (assumed constant), L is the length of the blade
(5 48m), vbi is the absolute velocity of blade ‘i’ including the nacelle motion that causes blade tip
displacement, this is a function of both the position along the blade, x, and time, t. Mnac is the
mass of nacelle, E is the Young’s Modulus for the blade, I is the second moment of area of
blade, ui is the relative displacement of the blade ‘i’, Knac is the stiffness of the nacelle and qnac is
the displacement of the nacelle.
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Each blade was modelled as a cantilever beam with uniformly distributed parameters as can
be observed from the expressions for the kinetic and potential energies in Equations (13a) and
(13b). The relative displacement of the blades, ui, was expressed as the product of the
modeshape multiplied by the tip displacement, shown in Equation (14) below

uiðx; tÞ ¼ fðxÞqiðtÞ ð14Þ

where F(x) is the modeshape and qi(t) is the relative tip displacement of blade i in the flapwise
direction. The blades were assumed to be vibrating in their fundamental mode and a quadratic
modeshape was assumed. This allowed reduction of the continuous beam to a single DOF, a
technique known as Rayleigh’s method [22].

The cantilevers were attached at their root to a large mass representing the nacelle of the
turbine. This allowed for the inclusion of the blade–tower interaction in the model. STMDs
were attached to the system, modelled as mass-spring-dashpot systems whose tuning was
controlled by the semi-active algorithm outlined later in this paper. A schematic of the model is
shown in Figure 1. The DOF marked q1, q2, q3 and qnac represent the motion of the blades and
nacelle, with the STMD displacements labelled as di, where i corresponds to the relevant DOF.
For simplicity, just two STMDs are shown in the diagram. One attached to the nacelle and the
other attached to the blade in the upright vertical position.

The final model with STMDs attached consisted of a total of eight DOF (with a total of four
dampers, one in each of the blades and one at the nacelle) expressed in the standard form as in
Equation (15) below.

½M �f€qg1½C�f_qg1½K�fqg ¼ fQg ð15Þ

where [M], [C] and [K] are the mass, damping and stiffness matrices of the system, respectively.
f€qg, f_qg and {q} are the acceleration, velocity and displacement vectors and {Q} is the loading.
Centrifugal stiffening was added to the model as per the formula developed by Hansen [11].
Structural damping included in the system was assumed to be in the form of stiffness
proportional damping.

3.2. Loading

Two simple load cases were studied in this paper. The first loading scenario looked at the effect
of a steady wind load that varied linearly with height. The rotation of the blades meant that the
loading on each blade was time dependant as they moved through the wind field. As a couple of
harmonic terms arose in the loading, it was simplified to just the first harmonic so the
performance of the STMDs could be assessed for this simpler load case. Equation (16) shows
the expression for the loading on blade 1. The loads on blades 2 and 3 are shifted by angles of

Figure 1. Dynamic model.
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2p/3 and 4p/3, respectively.

Q1 ¼
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3
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v2nac1LA

10
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2

� �
cosðOtÞ ð16Þ

where vnac is the wind speed at nacelle height, vnac1L is the change in wind speed between
the nacelle and the maximum blade tip height, i.e., when blade is in upright vertical position.
A is the area of blade, taken as 1 to normalize the load, with O as before equal to the rotational
speed of the blade. The loading on the nacelle was assumed to be zero so that all motion of
the nacelle was due to the forces transferred from the blades through the coupling present
in the system.

The second loading scenario considered the same load case as the first but with an added
random component modelling turbulent wind. This turbulent velocity component was
generated at a height equal to that of the nacelle using a Kaimal spectrum [23] defined by
Equations (17)–(19) below. Uniform turbulence was assumed for the blades.

fSvvðH ; f Þ
v2�

¼
200c

ð1150cÞ5=3
ð17Þ

where H is the nacelle height, Svv(H, f) is the power spectral density function of the fluctuating
wind velocity as a function of the hub elevation and frequency, v� is the friction velocity from
Equation (18), and c is known as the Monin coordinate which is defined in Equation (19).

�vðH Þ ¼
1

k
v� ln

H
z0

ð18Þ

c ¼
fH
�vðH Þ

ð19Þ

where k is Von-Karman’s constant (typically around 0.4 [24]), z0 5 0.005 (the roughness length)
and �vðH Þ is the mean wind speed. This results in a turbulence intensity of 0.115 in the generated
spectrum.

4. STFT-BASED TRACKING ALGORITHM

STFT is a commonly used method of identifying the time–frequency distribution of non-
stationary signals. It allows local frequencies to be identified in the response of the system that
may only exist for a short period of time. These local frequencies can be missed by normal Fast
Fourier Transform (FFT) techniques. The STFT algorithm splits up the signal into shorter time
segments and an FFT is performed on each segment to identify the dominant frequencies
present in the system during the time period considered. Combining the frequency spectra of
each of these short-time segments results in the time–frequency distribution of the system over
the entire time history [25].

The STFT algorithm developed in this study allows the STMDs to be tuned in real time to
the dominant frequencies in the system. Before each time segment is Fourier analysed, it is
multiplied by a window function centred on the time of interest. In this case, the time of interest
is the current time of the response to allow for real-time tuning. A Hanning window function
has been employed in this paper, emphasizing the frequencies near the current time. Once the
weighted signal is obtained, an FFT is performed and the frequency spectrum is obtained.
The dominant frequencies are then identified and the STMDs are tuned to these frequencies.
The algorithm is repeated every second allowing the tuning of the STMDs to be adjusted in real
time as the frequencies present in the system change. The semi-active algorithm is outlined in the
flow chart shown in Figure 2.
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5. RESULTS

5.1. Natural frequency estimation

The natural frequency was first calculated using the Frobenius method for a stationary
Bernoulli Euler beam, i.e. O5 0. This value was then used in the Lagrangian dynamic model
with the effect of centrifugal stiffening added in, which is dependent on the rotational speed, O.
Natural frequencies for three other rotational speeds were then obtained. The Frobenius
method results for the Bernoulli Euler beam were compared with two different cases from
Lagrangian analysis. The first was a single rotating uniform cantilever beam assuming the
nacelle motion to be zero. The second was a three-blade turbine model, which included
blade–tower interaction. A 14 term expansion was deemed sufficient for the Frobenius results.
All natural frequencies calculated are for the first mode of vibration. Higher modes can be
calculated easily using the Frobenius technique. The results for the first mode are shown in
Table I; it can be seen that there is a good agreement between the Frobenius results and the
Lagrangian single blade model. For the full three-blade model, including nacelle coupling, all
three-blade natural frequencies are listed. As evident in Table I, two of these are in good
agreement with the Frobenius results, whereas the third is significantly different. This is a result
of the interaction between the blades and nacelle. Omission of the nacelle coupling results in
three identical natural frequencies for the blades which are in close agreement with the
Lagrangian single blade and Frobenius results.

5.2. Dynamic response—steady wind load

The model was first run with all parameters constant (O, ob and onac) so the response of the
system could be observed under normal operating conditions of the turbine. Figure 3(a), (b)
shows the time history response of one of the blades and nacelle, respectively, whereas Figure
4(a), (b) illustrates the corresponding frequency content.

5.3. Dynamic control—turbulent wind load

The response of the model to the turbulent wind load described in Section 2.3 was then
investigated in detail, considering variation in the parameters of the system during operation of
the turbine. The results are discussed below.

5.3.1. Variation of O—rotational speed of the blades. The first parameter varied was the
rotational speed of the blades, O. The variation considered the blades slowing down linearly
over 180 s from 3.1 rad/s to 1.57 rad/s. The natural frequency of the blades and nacelle were kept

Figure 2. Semi-active algorithm.
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constant. Figure 5(a) shows the undamped and damped response of one of the blades with
Figure 5(b) showing the corresponding STMD behaviour by plotting the blade displacement,
STMD displacement and STMD tuning all with respect to time. This allows an insight into the
behaviour of the semi-active algorithm. As can be seen in Figure 5(a), a significant reduction is
achieved in the response of the blade. The behaviour of the STMD in Figure 5(b) clearly shows
the semi-active behaviour initiated at t5 41 s and the tuning of the STMD changing with respect
to time. The nacelle response and STMD behaviour is illustrated in Figure 6(a), (b). A large
reduction is again achieved when the STMD starts operating at t5 41 s.

5.3.2. Variation of ob1—the natural frequency of blade 1. The natural frequency of blade 1 was
varied from 1.5588Hz (9.79 rad/s) to 1.2398Hz (7.79 rad/s) at t5 70 s. This loss of blade

Figure 3. (a) Displacement of blade 1, O5 3.14 rads/s, ob 5 10 rads/s, onac 5 3.566 rads/s and
(b) Displacement of nacelle, O5 3.14 rads/s, ob 5 10 rads/s, onac 5 3.566 rads/s.

Figure 4. (a) Blade frequency response, O5 3.14 rads/s, ob 5 10 rads/s, onac 5 3.566 rads/s and (b) Nacelle
frequency response, O5 3.14 rads/s, ob 5 10 rads/s, onac 5 3.566 rads/s.

Table I. Natural frequency estimates.

O (Revs/min)
Bernoulli-Euler

Frobenius results (Hz)

Lagrangian 1-blade
(no coupling)

Eigenvalues (Hz)

Lagrangian 3-blades
(nacelle coupled)
Eigenvalues (Hz)

0 1.5588 1.5588 1.5588, 1.5588, 1.5588
10 1.5703 1.5700 1.5700, 1.5700, 1.9207
60 1.9274 1.9399 1.9394, 1.9394, 2.3649
120 2.8010 2.7863 2.7859, 2.7859, 3.3867
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stiffness simulates damage occurring in the blade. The other two blades were assumed to remain
unchanged.

Figure 7(a) plots the displacement response of blade 1. As can be observed at t5 70 s, the
behaviour of the blade changes due to the change in its natural frequency. The tuning of
the STMD adapts for this as can be seen in Figure 7(b). This results in an effective reduction in
the response of the blade before and after the change in natural frequency, as can be observed in
Figure 7(a).

The corresponding nacelle plots are shown in Figure 8(a), (b). Again the algorithm identifies
the shift in system behaviour and takes this into account, thus achieving a response reduction
before and after the change in the natural frequency of blade 1.

5.3.3. Variation of onac—the natural frequency of the nacelle. The natural frequency of the
nacelle was then varied from 0.5675Hz (3.566 rad/s) to 0.4775Hz (3 rad/s) again at t5 70 s,
simulating damage to the tower of the turbine.

The displacement response of blade 1 is plotted in Figure 9(a) with the corresponding STMD
behaviour shown in Figure 9(b). No real shift in blade behaviour is seen at t5 70 s. This suggests
that the frequency of the tower doesn’t have a large effect on the blade response. However, this

Figure 5. (a) Displacement response of blade 1, varying O, turbulent wind load and (b) Blade 1 STMD
behaviour, varying O, turbulent wind load.

Figure 6. (a) Displacement response of Nacelle, varying O, turbulent wind load and (b) Nacelle STMD
behaviour, varying O, turbulent wind load.
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Figure 7. (a) Displacement response of blade 1, varying ob, turbulent wind load and (b) Blade 1 STMD
behaviour, varying ob, turbulent wind load.

Figure 8. (a) Displacement response of nacelle, varying ob, turbulent wind load and (b) Nacelle STMD
behaviour, varying ob, turbulent wind load.

Figure 9. (a) Displacement response of blade 1, varying onac, turbulent wind load and (b) Blade 1 STMD
behaviour, varying onac, turbulent wind load.

J. ARRIGAN ET AL.

Copyright r 2010 John Wiley & Sons, Ltd. Struct. Control Health Monit. (2010)

DOI: 10.1002/stc



could also be a result of the fact that no load is considered to act on the nacelle. A good
reduction is again seen in the blade response with the STMD.

The same is seen for the nacelle results in Figure 10(a), (b). As expected, the semi-active
algorithm achieves a good reduction in response. A slight change can be seen in the tuning of the
nacelle STMD due to the shift in natural frequency but clearly this shift is not enough to cause a
noticeable change in the nacelle’s behaviour.

6. CONCLUSIONS

In this study, the use of STMDs to control wind turbine blades in flapwise bending has been
investigated. An STFT-based algorithm has been developed for semi-active tuning. The model
developed in this paper focused only on the structural dynamics of the turbine including the
interaction between the blades and the tower. The natural frequency of the rotating blades for
different rotational speeds, O, were calculated using a Lagrangian model by performing an
eigenvalue analysis on the system. These results were compared with those obtained by applying
the Frobenius method to a rotating Bernoulli Euler beam with the same stationary natural
frequency. Good agreement was seen between the models and the methods used.

Four STMDs were added to the model, one at each blade tip and one at the nacelle to control
the response of each component. The displacement response of the system was controlled in real
time by processing a moving window of 40 s and feeding back the information into the semi-
active algorithm. This 40-s window allowed a frequency of 0.025Hz to be captured which is the
incremental frequency for retuning of the STMDs. This ensures no mistuning of the dampers.
The windowed time segment was then Fourier analysed to determine the dominant frequencies
in the system at the current time. The STMDs were then repeatedly tuned every second in real
time according to this algorithm. A Hanning window function was employed.

Numerical simulations were carried out to ascertain the effectiveness of the STMDs in
mitigating flapwise vibrations in the model when variations were considered in three of the
system parameters. The parameters varied were the rotational speed, O, the natural frequency of
blade 1, ob1, and the natural frequency of the nacelle, onac. This allowed the simulations to take
account of changes in system parameters during operational conditions of the turbine due to
environmental changes or damage in the blades and nacelle, which may occur during the life
cycle of the turbine. Significant reduction was achieved by the semi-active algorithm for the
turbulent wind loading considered, highlighting the viability of STMDs in controlling flapwise
vibrations in wind turbines. The STMDs also successfully reduce the response of the system
when excited by the simpler steady wind load. Further studies by the authors into the
investigation and control of edgewise vibrations in the blades are currently in progress.

Figure 10. (a) Displacement response of nacelle, varying onac, turbulent wind load and (b) Nacelle STMD
behaviour, varying onac, turbulent wind load.
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