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Abstract: This paper proposes a multiresolution based wavelet controller for the control of linear time varying systems consisting of a
time invariant component and a component with zero mean slowly time varying parameters. The real time discrete wavelet transform
controller is based on a time interval from the initial until the current time and is updated at regular time steps. By casting a modified
optimal control problem in a linear quadratic regulator �LQR� form constrained to a band of frequency in the wavelet domain, frequency
band dependent control gain matrices are obtained. The weighting matrices are varied for different bands of frequencies depending on the
emphasis to be placed on the response energy or the control effort in minimizing the cost functional, for the particular band of frequency
leading to frequency dependent gains. The frequency dependent control gain matrices of the developed controller are applied to multi-
resolution analysis �MRA� based filtered time signals obtained until the current time. The use of MRA ensures perfect decomposition to
obtain filtered time signals over the finite interval considered, with a fast numerical implementation for control application. The proposed
controller developed using the Daubechies wavelet is shown to work effectively for the control of free and forced vibration �both under
harmonic and random excitations� responses of linear time varying single-degree-of-freedom and multidegree-of-freedom systems. Even
for the cases where the conventional LQR or addition of viscous damping fails to control the vibration response, the proposed controller
effectively suppresses the instabilities in the linear time varying systems.
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Introduction

Several civil and mechanical engineering systems possess time
varying system properties. These include disks mounted on verti-
cal shafts with nonuniform elasticity, rotating machineries with
cracks or nonuniform flexibility, cable stayed structures, offshore
structures, variable speed wind turbines and helicopter blades to
name a few. Such systems often exhibit instabilities including
parametric and internal resonances and the associated dynamics
have been dealt with in detail by Den Hartog �1956�, Ibrahim
�1985�, and Dimentberg �1988�.

The class of systems which shows variability in elasticity or
stiffness variation due to opening and closing of cracks in civil
engineering structures or cyclostationarity due to rotating
machineries/turbo generators may lead to instabilities in the dy-
namic response �Den Hartog 1956�. The nature of vibration of
these systems inherently becomes nonstationary due to the intro-
duction of additional frequencies �unlike a linear system� with the

1Associate Professor, Dept. of Civil, Structural, and Environmental
Engineering, Trinity College, Dublin, Ireland; formerly, Visiting Profes-
sor, Dept. of Civil and Environmental Engineering, Rice Univ., Houston,
TX 77005 �corresponding author�. E-mail: basub@tcd.ie

2Professor, Dept. of Civil and Environmental Engineering and Dept.
of Mechanical Engineering and Material Science, Rice Univ., Houston,
TX 77005. E-mail: Satish.Nagarajaiah@rice.edu

Note. This manuscript was submitted on September 4, 2009; approved
on March 11, 2010; published online on March 16, 2010. Discussion
period open until February 1, 2011; separate discussions must be submit-
ted for individual papers. This paper is part of the Journal of Engineer-
ing Mechanics, Vol. 136, No. 9, September 1, 2010. ©ASCE, ISSN

0733-9399/2010/9-1143–1151/$25.00.

JOURNAL O

Downloaded 04 Aug 2011 to 168.7.64.47. Redistribut
onset of the instabilities. While the dynamics of the stiffness/
elasticity varying systems have been studied in literature, the con-
trol of such vibrations using active or semiactive control
techniques will be the natural step to follow up based on the
available understanding of these systems.

There has been limited amount of research available in litera-
ture on the control of time varying systems. Algebraic methods
have been used by Kamen �1988� to control linear time varying
systems. Tsakalis and Ioannou �1993� have presented results for
the adaptive control of time varying systems. A robust adaptive
control structure derived from the linear quadratic problem has
been proposed by Sun and Ioannou �1992� and robust adaptive
control has been dealt with in general by Ioannou and Sun �1996�.

Since the vibratory signals of the previously mentioned civil
and mechanical systems with variable stiffness are nonstationary
in nature, a control law designed based on the time-frequency
characteristics of the vibration signals is expected to control the
instabilities better. To this end, a modified form of the conven-
tional linear quadratic regulator �LQR� with the control gain de-
rived by the use of wavelet analysis of the states is proposed in
this paper. Wavelet analysis being a time-frequency technique is
able to incorporate the information of the local time varying fre-
quency content of the vibration signal. Hence, this can account
for the instabilities which are known to be induced in certain
frequency bands. Therefore, the weightings for the conventional
LQR controller can be adjusted depending on the desired fre-
quency bands required to be suppressed. Being a time-frequency
technique, the wavelet based controller suppresses the frequencies
locally in time. This wavelet-LQR controller works at different or
multiple time scales, finally leading to a time varying control

gain, even though for each frequency band width or scale the
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gains are time invariant. The control gain is formulated in the
wavelet domain to manipulate the effects in the time-frequency
domain. Finally, to compute the control in the time domain a
multiresolution analysis �MRA� based discrete wavelet transform
�DWT� is used, with the application of frequency band dependent
gains to different filtered signals at different frequency bands.
The use of MRA based DWT provides exact decomposition/
reconstruction of signals and a fast algorithm for the purpose of
control. The real time DWT controller is based on a window from
the initial time, t0, until the current time, tc, with updating at
regular time intervals. The formulation assumes that the param-
eters of system vary slowly in time.

Some examples of stiffness varying single-degree-of-freedom
�SDOF� and two-degree-of-freedom �2DOF� systems have been
considered. The systems have been subjected to free and forced
vibrations with harmonic and random nonstationary excitations.
The results show that the proposed controller is effective in sup-
pressing the instabilities and controlling the vibrations. Compari-
son with the classical LQR shows that the proposed controller is
even effective in cases where the former is unsuccessful in con-
trolling the response.

Formulation

Let us consider a linear time varying system with a controller
represented by state-space matrix equations as follows:

�ẋ� = �A�t���x� + �B��u� + �F� �1�

In Eq. �1�, �x�= �n�1� state vector; �A�t��= �A0�+ ��A�t��= �n
�n� time varying state matrix with �A0� and ��A�t�� as a time
invariant �nominal� and a slowly time varying component, respec-
tively; �B�= �n�m� control influence vector; �u�= �m�1� control
vector; and �F�= �n�1� external excitation vector. On wavelet
transforming and integrating by parts the ith equation in wavelet
domain is �for standard results on wavelet analysis refer to
Daubechies 1992�

�

�b
W�xi�a,b� = �

k=1

n

W��Aikxk��a,b� + �
k=1

m

BikW�uk�a,b�

+ W�Fi�a,b�; ∀ a � R �2�

where �=wavelet basis function and W�� • ��a ,b�=wavelet trans-
form of � • � with respect to the basis �. For a particular value of
“a,” Eq. �2� leads to an ordinary differential equation

W�a
� xi�b� = �

k=1

n

W�a
�Aikxk��b� + �

k=1

m

BikW�a
uk�b� + W�a

Fi�b�

�3�

where prime denotes differentiation with respect to the parameter
b �the translational parameter�.

Consider the term W�a
�Aikxk��b� in Eq. �3�

W�a
�Aikxk��b� =

1
�a
	

t0

tc

Aik�t�xk�t��
 t − b

a
�dt; t0 � b � tc �4�

It may be noted that ���t−b� /a� is a fast decaying function local-
ized around �t=b�, by the property of wavelet basis functions. If
Aik�t� is a slowly varying function �with finite or countably infi-
nite discontinuitites, e.g., sudden change in system parameters� as
compared to ���t−b� /a� �i.e., if ��̂�a��� �hat denotes a Fourier

transformed quantity� is of higher frequency content� and/or xk�t�,
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then for the evaluation of the integral in Eq. �4�, Aik�t� can be
approximated to be a constant with a value equal to the mean
�nominal� value of A0ik. This leads to

W�a
�Aikxk��b�  A0ikW�a

xk�b� �5�

Substituting Eq. �5�, Eq. �3� for the ith state becomes

W�a
� xi�a,b� = �

k=1

n

A0ikW�a
xk�b� + �

k=1

m

BikW�a
uk�b� + W�a

Fi�b�

�6�

In matrix form, Eq. �6� can be expressed as

�W�a
� x� = �A0��W�a

x� + �B��W�a
u� + �W�a

F�; ∀ a � R �7�

Eq. �7� is analogous to Eq. �1� in the wavelet domain with the
time parameter being replaced by the translation parameter
�around which temporal information is also localized� in the
wavelet domain. The other difference between the two equations
being that Eq. �7� is for a transformed process of the state i.e.,
�W�a

x� and not the state �x� itself. From the modulus of the Fou-
rier transform of �W�a

xi�b��, i.e.,

�Ŵ�a
Xi���� = �a��̂�a����X̂i���� �8�

it can be inferred that W�a
xi�b� is narrow banded as ��̂�a��� is

narrow banded with localized frequency �by construction of
wavelet basis�, even though x�t� may not be narrow banded.
Hence, Eq. �1� has been transformed to a set of equations with
states having narrow banded frequency content.

Wavelet Controller

The control action is expressed in wavelet domain as

�W�a
u� = − �G�a�W�a

x� �9�

where �G�a=control gain matrix and is dependent on the dilation
parameter a which controls the frequency content of �W�a

u�.
Hence, the gain matrix �G�a can be chosen depending upon the
frequency bands over which the controller is desired to be acting
�i.e., with a requirement of higher demand on the control force or
effort to control the response� and can be varied for different
frequency bands.

With the control equation given by Eq. �9�, an alternative op-
timal control problem is formulated to sought the minimization of
the functional

Ja =	
t0

tc

��W�a
x�T�Q�a�W�a

x� + �W�a
u�T�R�a�W�a

u��db �10�

Eq. �10� is a quadratic functional as in case of a classical LQR but
valid for wavelet transformed states at a frequency band with
dilation parameter a. The matrices �Q�a and �R�a=weighting ma-
trices and are dependent on the parameter a corresponding to a
frequency band. Hence, this makes it possible to vary the weight-
ing matrices for different frequency bands if desired.

Interpretation of the Minimizing Functional

To interpret the physical significance of the functional in Eq. �10�,
let us consider a single term in the integrand of Eq. �10� arising
out of the matrix multiplication �W�a

x�T�Q�a�W�a
x�, i.e.,
W�a
xiQika

W�a
xk. It can be shown that
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C�	
0

� 1

a2	
t0

tc

W�a
xiQija

W�a
xkdbda = T�xi,xk� �11�

where Qika
=element of �Q�a and T�xi ,xk� is a functional of xi and

xk. If �Q�a and �R�a are assumed to be invariant with the fre-
quency bands, i.e.

�Q�a = �Q� �12�

and

�R�a = �R� �13�

then, it follows that �Daubechies 1992�:

T�xi,xk� =	
t0

tc

xi�t�Qikxk�t�dt �14�

and

	
0

� C�

a2 Jada =	
t0

tc

��x�T�Q��x� + �u�T�R��u��dt = J �15�

which is the functional minimized for the classical LQR involving
the combination of cost of the response and the control. Hence,
the proposed optimal control problem formulation minimizing Ja

in Eq. �10� minimizes the weighted combined cost of the response
and the control effort in the frequency band corresponding to the
parameter a. Though this is not the global optimal, it is a local
optimal solution constrained to the frequency band concerned and
thus is a constrained suboptimal problem.

Synthesis of the Control in Time Domain

To synthesize the control action in time domain at the time in-
stant, t= tc, based on the information available on the states in the
time interval �t0 , tc�, the use of continuous wavelet transform is
not suitable. For exact decomposition/reconstruction of signals
over a finite interval �t0 , tc� without any edge effects the use of
DWT is essential. Hence, DWT will be used to synthesize the
control, as derived in this section. In fact, the filtered signals
�containing the information from wavelet coefficients� obtained
from MRA based DWT will be used for the formulation in this
section, instead of the wavelet coefficients directly. This also
naturally eliminates the necessity of any integral calculations in
evaluating the wavelet coefficients.

In order to compute the control action in real time, a relation
between the continuous wavelet transform based control algo-
rithm �as discussed in the previous section� and the DWT based
control algorithm to be used for the proposed control scheme has
to be established first. Hence, initially we consider the control in
continuous time domain obtained from the continuous wavelet
transform using the inversion theorem

�u�t�� = C�
−1	 	 1

a2 �W�a
u�b���
 t − b

a
�dbda �16�
JOURNAL O
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Using Eq. �16� in Eq. �9�

�u�tc�� = − C�
−1	

0

aL 	
t0

tc �G�a

a2 �W�a
x�b���
 tc − b

a
�dbda

− C�
−1	

aL

au 	
t0

tc �G�a

a2 �W�a
x�b���
 tc − b

a
�dbda

− C�
−1	

au

� 	
t0

tc �G�a

a2 �W�a
x�b���
 tc − b

a
�dbda �17�

where aL=dilation parameter below which the signal can be rep-
resented by a low frequency approximation and au=parameter
which corresponds to the band above which are the frequency
bands which could be ignored �i.e., these frequencies are not
in the space of the function considered�. Thus, the third term on
the right hand side of Eq. �17� can be ignored. On sampling
the dilation parameter a and discretizing we get a sequence
�0,a1 , . . . ,aL , . . . ,aj−1 ,aj ,aj+1 , . . . ,au�. It is assumed that the dif-
ferent gain matrices vary in different bands according to

�G�a = �G�L; a � aL

�G�a = �G� j; aj � a � aj+1

�G�a = 0; a � au �18�

where �G�a= �G� j for all aL�aj �au−1=matrices which are con-
stant over the band of frequencies for a particular scale aj. Using
Eq. �18� in Eq. �17�

�u�tc�� = − �G�LC�
−1	

0

aL 	
t0

tc 1

a2 �W�a
x�b���
 tc − b

a
�dbda

− �
j=L

u−1

�G� jC�
−1	

aj

aj+1 	
t0

tc 1

a2 �W�a
x�b���
 tc − b

a
�dbda

�19�

However, Eq. �19� will not be used for computation of control
action. For the purpose of synthesis of the control function by
using the filtered signals �to be used in Eq. �19�� for different
frequency bands, DWT is used with perfect reconstruction capa-
bility. The DWT also lends itself to a fast numerical algorithm
based on MRA. The idea behind the MRA using wavelets is very
similar to subband decomposition where a signal is divided into a
set of signals each containing a frequency band. In MRA the input
at each stage is always split into two bands in time; the higher
band becomes one of the outputs, while the lower band again is
further split into two bands. This procedure is continued until a
desired resolution is achieved.

Considering the state vector and using an appropriate wavelet
with basis and scaling function � and 	, respectively, the scale
equations are used to generate the high and low pass filters. There
are two digital filters g and h used in the process of MRA, which
determine the wavelet basis function ��t� and the associated scal-
ing function 	�t�. For a dyadic wavelet construction, these two

functions are given by two-scale equations
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	�t� = 2�
l

ḡ�l�	�2t − l� �20�

and

��t� = 2�
l

h̄�l�	�2t − l� �21�

where, for perfect reconstruction, the coefficients ḡ and h̄, respec-
tively, must satisfy the relationship

g�l� = ḡ�p − 1 − l� �22�

h�l� = h̄�p − 1 − l� �23�

In Eqs. �22� and �23�, the delay p−1=filter order for the chosen
filter, which is related to the wavelet basis function.

These filters for a dyadic MRA with 2n data points in the state
signal are subsequently used to generate:
1. A low frequency signal approximation �below frequencies

corresponding to the dilation aL� which in terms of continu-
ous wavelet transform can be written as

�x�L = C�
−1	

0

aL 	
t0

tc 1

a2 �W�a
x�b���
 t − b

a
�dbda �24�

and is computed using the scaling function as

�x�L =	
t0

tc

�x�t��	Ln�t�dt �25�

2. Band limited signal components to give filtered signals in the
frequency bands covered between the range corresponding to
the dilation parameters aj and aj+1, as

�x�dj
= C�

−1	
aj

aj+1 	
t0

tc 1

a2 �W�a
x�b���
 t − b

a
�dbda �26�

and is computed by

�x�dj
=	

t0

tc

�x�t��� jn�t�dt �27�

with

	Ln�t� = 2−�L/2�	
 t

2L − n� �28�

� jn = 2−��j−2�/2� � h�l�	
 t

2 j−1 − p + 1 − 2n� �29�

The components from 1 and 2 can be used to reconstruct the
signal

�x�t�� = �x�t��L + �
j=L

u−1

�x�t��dj
�30�

When Eqs. �24� and �26� are used in Eq. �19�, it produces the
control in time domain

�u� = − �G�L�x�L − �
j=L

u−1

�G�dj
�x�dj

�31�

synthesized using frequency dependent gains for different fre-
quency bands. It may be noted that if the gain matrices in Eq. �31�

are equal, i.e.
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�G�L = �G�dj
= �G�; ∀ j = L,L + 1, . . . ,u − 1 �32�

then it leads to the classical control.
The proposed MRA wavelet controller by the use of frequency

dependent gains applied to the filtered time-frequency signals
produces an equivalent gain with time varying nature. The control
input can thus be alternatively expressed as

�u� = �Ge�t���x� �33�

where the equivalent gain matrix is given by

�Ge�t�� = − �G�L�x�L�x�T��x��x�T�−1

− �
j=L

u−1

�G�dj
�x�dj

�x�T��x��x�T�−1 �34�

However, Eq. �34� is not used for calculation or implementation
of the controller. Instead the control action is calculated in a more
computationally simple way using Eq. �31�. The frequency band
dependent gains used in Eq. �31� are computed offline using the
nominal state matrix �A0� and ��A�t�� is not required for the
computation. The use of filtered time-frequency signals in real
time to compute the control input in Eq. �31� and the multiplica-
tion of the time-frequency signals with the frequency dependent
gains leading to an equivalent time varying control gain inher-
ently accounts for the evolutionary frequency content of the re-
sponse of the time varying system.

Determination of the Weighting Matrices

To obtain the gain matrices for different frequency bands, it is
necessary to determine the weighting matrices for different bands
to solve the optimal control problem for that frequency band.
With the discretized bands, the weighting matrices will be �Q�L,
�R�L and �Q� j, �R� j; for L� j�u−1. The weighting matrices may
be chosen to suppress the band of frequencies in the response
which induce instabilities in the time varying system or undesired
superharmonic or subharmonic responses. For these bands, the
weight on the control effort may be relaxed to minimize the total
cost functional as more control effort to suppress the response in
these preferential bands is desired without increasing the cost by
increased gain over all frequency bands.

The solution of the optimal problem in each frequency band
would lead to a Ricatti differential matrix equation as in the clas-
sical LQR problem in the respective frequency bands with the
frequency band dependent weighting matrices; finally leading to
the algebraic Ricatti equation under steady state for each of the
frequency bands, based on the assumption of a slowly varying
system characteristic matrix �A�t��. Solving for the Ricatti equa-
tion for the case of each frequency band produces the required
frequency dependent gain matrices to be used to synthesize the
control in time domain using Eq. �31�.

Real-Time Implementation of Control
Algorithm

The real time control algorithm scheme is discussed for a linear
time varying system with a state matrix consisting of a time in-
variant �nominal� and a time varying component.
• Step 1: calculate �G�L and �G� j using frequency dependent

weighting matrices �Q�L, �R�L and �Q� j, �R� j; L , j�u−1;
• Step 2: set t0=0, tinc=�t, and define tc= t0+ tinc;

• Step 3: consider the interval �t0 , tc�;
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• Step 4: record the response �x�t� : t� �t0 , tc��;
• Step 5: decompose �x�t�� using MRA based DWT into �x�t��L

and �x�t��dj
; L� j�u−1;

• Step 6: calculate control input u�tc� at t= tc using Eq. �31�;
• Step 7: update tc= tc+ tinc; and
• Step 8: repeat Steps 3–7.

Example Systems

First Example

To illustrate the application of the proposed wavelet based modi-
fied LQR control scheme and its effectiveness, a system with
known instabilities �given by Den Hartog 1956� has been con-
sidered as an example, first of all. The system is a SDOF sys-
tem with variable stiffness and the free vibration displacement
response x�t� �with the overdot denoting differentiation with re-
spect to time� is represented by the mass normalized differential
equation

ẍ + �n
2�1 + 
�k

k
� f�t��x = 0 �35�

where �n=natural frequency; ��k /k�=maximum ratio of stiffness
variability; and f�t�=periodic function of the time representing
the stiffness variation. In particular, for the example system con-
sidered, the variation of stiffness is assumed to be periodic with
frequency �k and is given by rectangular steps with binary values.
This variation is expressed as

f�t� = 1,2N
 � �kt � �2N + 1�


= − 1,�2N + 1�
 � �kt � 2�N + 1�
 �36�

where N being an integer. The instabilities for this particular sys-
tem for several parametric values have been derived by Den Har-
tog �1956�. Hence, it would be appropriate to see how the
controller is able to control the response for this system with
instabilities known to exist for certain parameters.

Second Example

To show the effectiveness of the proposed controller in the gen-
eral context of a multidegree-of-freedom �MDOF� system, a
2DOF time varying system is considered as a second example
�shown in Fig. 1�. The general equations of motion for the
viscously damped forced vibration of the system in a mass nor-
malized form, with absolute displacement response �x�t��

T

c1c2

m2 m1

x1(t)x2(t)
k1(1+1)f1k2(1+2)f2

Fig. 1. 2DOF system
= �x1�t�x2�t�� , are given by
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ẍ1 + 2�1�n1
�ẋ1 − ẋ2� + �n1

2 �1 + �1f1�t���x1 − x2� = p1�t� �37�

and

ẍ2 + 2�2�n2
ẋ2 − 2�1�n1

�ẋ1 − ẋ2� + �n2

2 �1 + �2f2�t��x2

− �n1

2 �1 + �1f1�t���x1 − x2� = p2�t� �38�

In Eqs. �37� and �38�, the damping parameters are 2�1�n1
=c1 /m1 and 2�2�n2

=c2 /m2; the stiffness parameters are �n1

=�k1 /m1
and �n2 =�k2 /m2

; the maximum stiffness variation ratio
for the springs attached to the first and the second degree of
freedom �i.e., x1 and x2, respectively� are �1=�k1 /k1 and �2

=�k2 /k2; the functions f j�t��j=1,2� denote the variation of the
stiffness with time for the springs attached to the jth degree of
freedom; pj�t��j=1,2�=excitation accelerations at the jth degree
of freedom; and �=m1 /m2�=mass ratio.

Results

SDOF System

For numerical simulation of the SDOF system, the parameters for
the natural frequency �n, the ratio ��n /�k�, and the maximum
ratio of stiffness variability ��k /k� are assumed to be 2
 rad /s,
1.732, and 0.9, respectively. The response for the system is
simulated with an initial displacement of 0.01 m and is seen to
diverge in Fig. 2�a�. This tallies with the analytical prediction by
Den Hartog �1956� as the region with the chosen parameter com-
bination is shown to be unstable �Den Hartog 1956�. To inves-
tigate the nature of the response and the frequencies induced in
the response the Fourier amplitude of the response is plotted in
Fig. 2�b�. The Fourier spectrum clearly shows that there is con-
siderable amount of energy in the low frequency range �below 4
rad/s� which contributes to the instability in the system. Also,
there are additional frequencies �superharmonic� around 10 rad/s,
however, relatively low in amplitude. These observations form
the basis for choosing the frequency bands for applying the fre-
quency dependent gains to the wavelet domain time-frequency
signals of the states.

Implementation of the Control Numerical
Algorithm

The orthogonal wavelet basis �db4 with two vanishing moments�
proposed by Daubechies is used to decompose the time signals
for the different states in the different approximation spaces to
represent the signals containing frequencies of desired bands. The
Daubechies wavelets are localized in time and frequency to cap-
ture the effects of local frequency content in a time signal and
allows for fast decomposition and reconstruction using MRA with
perfect reconstructing capability. The vibration response signals
recorded in real time are decomposed into seven levels with dy-
adic scales generating seven detail signals corresponding to fre-
quency bands with central frequencies ranging from 3.23 rad/s to
103.52 rad/s and an approximation signal at Level 7. The approxi-
mation signal at Level 7 contains frequencies from bands with
central frequencies less than 3.23 rad/s. To put emphasis on
the low frequency bands, which is a primary reason for inducing
the instability in this case, the LQR problem is first solved with
relaxed weightage on the control effort, i.e., with R=0.1 and
Q= �I�. The gains obtained are applied to the filtered time signals

for the states in the wavelet domain at the approximation spaces
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with dyadic frequency bands having central frequencies less than
3.23 rad/s �approximation space for Level 7�. The filtered signals
in the wavelet domain represent a band of frequencies. Since,
by applying the dyadic Daubechies wavelet the subsequent level
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Fig. 2. �a� Uncontrolled response of SDOF system; �b� Fourier amplit
the LQR and the wavelet controller; �d� control force for the LQR
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controller
of approximation corresponds to 6.5 rad/s, it may be approxi-
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mately stated that the approximation spaces cover 0 rad/s to about
4–5 rad/s. This covers the dominant frequencies introducing in-
stability in the system. Next, to control the vibration associated
with the rest of the frequency bands, the LQR problem is again
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trol effort and the response energy, respectively �as is usual in
many cases when no special emphasis is desired to be placed on
the requirement of additional control effort�. The gains obtained
are applied to the wavelet based filtered signals of the states for
the complement of the approximation space for Level 7. The
complement is obtained by subtracting the approximation signal
at Level 7 from the recorded signal in the interval concerned. This
covers all the frequency bands with central frequencies higher
than 3.23 rad/s contained in the vibration signal. The control input
is constructed in time domain by a linear combination of the
frequency dependent gain weighted filtered signals derived from
MRA. This procedure is carried out progressively in time to cal-
culate the control at the current time instant. The signals for the
states available up to the current time point is used for wavelet
based decomposition of the state signals and synthesis of the con-
trol. Since the frequency dependent gains are calculated based on
the nominal state matrix �A0�, these are to be calculated offline at
the beginning and will subsequently be used for DWT based com-
putation of the control input in real time. As previously mentioned
the MRA algorithm for wavelet decomposition and reconstruction
is a very fast algorithm with time complexity �O�N�, where N
=length of the data �faster than fast Fourier transform �FFT� for
which the time complexity is �O�N log N�� and hence, the syn-
thesis of the control is efficient.

The controlled displacement response and the normalized
control force �with respect to the weight of the SDOF system�
required are plotted in Figs. 2�c and d�, respectively. The effec-
tiveness of the control strategy is apparent with the peak normal-
ized control force requirement of less than 2% to control the free
vibration response. To compare the performance of the proposed
controller with a conventional LQR controller, the control gains
are computed with the weightings R=1 and Q= �I� and are ap-
plied to control the vibration. It is clear that the classical LQR
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Fig. 3. �a� Free vibration response of 2DOF system; �b� Fourier amp
vibration; and �d� control force for controlling free vibration
controller fails miserably to control the vibration which is seen to
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diverge in Fig. 2�c� with a consequence of high building up of the
normalized control force requirement. To investigate further if the
wavelet controlled response is really stable �as there is a possibil-
ity for the response to grow if it close to the stability margin�
numerical simulation has been run for a longer duration of time of
60 s and it has been found to be stable. The plots for the displace-
ment response and the control force are shown in Figs. 2�e and f�.
In addition, the Fourier amplitude of the control force is plotted in
Fig. 2�g� showing the concentration of the energy in the low
frequency range to control the instability.

2DOF System

Free Vibration
The parameters considered for the simulation of the undamped
free vibration of the 2DOF system considered are �n1

=2

rad /s, �n2

=2.5
 rad /s, ��n1
/�k�=1.732, and =0.7. The maxi-

mum ratio of stiffness variability ��k1 /k1� and ��k2 /k2� are as-
sumed to be 0.9 each. The responses for the system are simulated
by assuming the initial displacements of x1=0.01 m and x2

=0.02 m. The plots in Fig. 3�a� clearly show the divergence of the
responses and that the system is unstable for the combination of
parameters considered for the 2DOF linear time varying system.
The plots of the Fourier amplitudes of the responses in Fig. 3�b�
confirms the conclusion from Fig. 3�a� and is indicative of the
instability with a concentration of the energy content in the range
0–4 rad/s. Hence, the weightings used to obtain the gains corre-
sponding to bands of the frequencies in the approximate range
0–4 rad/s are R=0.1 and Q= �I�, as was chosen in the case of the
SDOF system for preferred frequency bands �approximation
Level 7 with dyadic scale�. For the complementary space cover-
ing all the higher frequencies in the signals, the weighting matri-

0 5 10 15 20
10

1

10
2

10
3

Frequency,ω (rad/s)

F
o
u
ri
e
r

A
m

p
lit

u
d
e

(b)

0 2 4 6 8
−2

−1

0

1

2

3

4

Time (sec)

F
o
rc

e
(%

o
f
w

e
ig

h
t)

(d)

|X
1
(ω)|

|X
2
(ω)|

of responses of 2DOF system; �c� controlled responses of 2DOF free
8

8

litude
ces are kept unaltered as in the case of the SDOF system. The

F ENGINEERING MECHANICS © ASCE / SEPTEMBER 2010 / 1149

ion subject to ASCE license or copyright. Visit http://www.ascelibrary.org



proposed controller is used to control the response of the 2DOF
system with one controller acting on the mass m1 and the
gains are calculated appropriately for the 2DOF system. The
controlled displacement responses and the normalized control
force �as a percent of the total weight of the 2DOF system� are
plotted in Figs. 3�c and d�, respectively. The controller is able to
control the displacement responses with a peak control force of
about 3.2%.

Forced Vibration
On being able to stabilize the free vibration response successfully,
the effectiveness of the controller in reducing forced vibration
response is examined next. Two cases of forcing are considered;
harmonic excitation and simulated nonstationary random excita-
tion.

A harmonic base excitation of frequency 7.8 rad/s �close to
�n2

� is applied to a damped case of the 2DOF system considered
previously for the free vibration study. The damping parameters
assumed are c1 /m1=c2 /m2=1. Fig. 4�a� shows that the responses
of the viscously damped 2DOF system diverge for the harmonic
excitation considered. This clearly happens due to the instability
in the linear time-varying system which is unexpected for linear
viscously damped systems. The proposed controller is successful
in controlling the vibration within the first few seconds of the
response �Fig. 4�b�� with normalized control force requirement of
less than 6.5% of the total weight �Fig. 4�c��.

The nonstationary random base acceleration is considered
next. A band limited excitation is simulated and modulated by
a Shinozuka and Sato �1967� type of amplitude modulating
function �with parameters �=4, �=6.22 and �=3.11 leading to
a peak of the modulating function at around 4.99 s� to generate a
transient, nonwhite, and nonstationary excitation. A plot of the
simulated random excitation is shown in Fig. 5�a� with peak ac-
celeration close to 0.5g. To investigate the effect of damping and
its effectiveness in reducing the unstable response, the forced vi-
bration responses of the 2DOF system with damping coefficients
c1 /m1=c2 /m2=1 and c1 /m1=c2 /m2=2 are studied and plotted in
Figs. 5�b and c�, respectively. It is seen from Figs. 5�b and c� that
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Fig. 4. Harmonic excitation of frequency 7.8 rad/s with viscous
damping: �a� uncontrolled response; �b� controlled displacement re-
sponses; and �c� control force for harmonic excitation
even by doubling the damping, the responses for both the states of
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the 2DOF system are uncontrollable. Though for a higher viscous
damping the build up of the responses are relatively delayed as
compared to the case with a lower damping, it is clearly unable to
suppress the instability �Fig. 5�c��.

The proposed controller, with similar weights for the case of
the previous controllers �R=0.1, �Q�= �I� for frequency bands
around 0–4 rad/s; and R=1, �Q�= �I� for the rest of the fre-
quencies�, controls the responses as shown in Fig. 6�a� with
peak control force requirement of about 7.5% of the total weight
�Fig. 6�b��.

In order to study the effect of multiple controllers in control-
ling response of the system, two controllers located at the two
degrees of freedom of the system are used instead of a single
controller applied to mass m1 as in the previous cases. The
weighting matrices in case of two controllers become R=0.1�I�,
�Q�= �I� for frequency bands around 0–4 rad/s; and R= �I�,
�Q�= �I� for the rest of the frequency bands. The controlled dis-
placement responses and the control forces as a percentage of
the weight of each floor are plotted in Figs. 6�c and d�, respec-
tively. The controlled peak displacement particularly for x2 �at the
location where the second controller is placed� reduces signifi-
cantly by about 50% from about 0.15 m in the case of a single
controller to about 0.07 m. Also, the peak control force for
each of the controllers is much less than the peak control force
requirement for a single controller. The peak control forces for
both the controller are about 11.5% of the floor weight which
amounts to about 4.7% of the total weight in one controller and
6.7% of the total weight in the other �since mass ratio m1 /m2

=0.7�. However, it may be noted that the total energy consumed
by the two controllers is greater than that of a single controller, as
the reduced controlled response and ease in application with the
avoidance of problems such as controller saturation comes at a
price.

Conclusions

A new type of controller for linear slowly time-varying systems
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Fig. 5. �a� Random nonstationary excitation simulated with ampli-
tude modulation; �b� responses of 2DOF damped system with
c1 /m1=c2 /m2=1; and �c� responses of 2DOF damped system with
c1 /m1=c2 /m2=2
which is based on the multiresolution capability of wavelet analy-
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sis to produce time-frequency signals is proposed in this paper.
The frequency dependent control gain matrices have been used
based on the desired emphasis to be placed on different frequency
bands for controlling the response of a system. An optimal control
problem is formulated and is seen to follow a LQR problem con-
strained to a band of frequency. The solution of this problem to
different frequency bands leads to a suboptimal constrained solu-
tion. While the flexibility of choosing frequency dependent
weighting matrices provides versatility to the control scheme, the
synthesis of the control force in time domain by using linear
combination of filtered time-frequency signals weighted by fre-
quency band dependent gains accounts for evolutionary frequency
content in a time varying system. The control scheme uses filtered
signals in time-frequency domain with the MRA based DWT aid-
ing the process through a fast numerical algorithm and hence is
efficient for real-time implementation.

The numerical studies carried out in this paper with the wave-
let controller developed using Daubechies wavelet have proved
the efficiency of the controller. The proposed controller has been
shown to control response of linear time varying systems where
the conventional LQR controller has been unsuccessful. The ap-
plication of the wavelet based multi resolution controller to SDOF
and MDOF linear time varying systems for both free and forced
vibrations �with harmonic and random excitations� has been suc-
cessful in efficiently suppressing instabilities even in cases where
increased viscous damping has been ineffective. The developed
controller in this paper holds promise for extension in suppressing
subharmonic and superharmonic responses in nonlinear systems
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Fig. 6. �a� Controlled response with single controller; �b� control for
�d� control forces with two controllers
and will be addressed by the writers in forthcoming papers.
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