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SUMMARY

This paper presents the benchmark problem definition for seismically excited base-isolated buildings. The
objective of this benchmark study is to provide a well-defined base-isolated building with a broad set of
carefully chosen parameter sets, performance measures and guidelines to the participants, so that they can
evaluate their control algorithms. The control algorithms may be passive, active or semi-active. The
benchmark structure considered is an eight-storey base-isolated building similar to existing buildings in Los
Angeles, California. The base isolation system includes both linear and nonlinear bearings and control
devices. The superstructure is considered to be a linear elastic system with lateral–torsional behavior. A
new nonlinear dynamic analysis program has been developed and made available to facilitate direct
comparison of results of different control algorithms. Copyright # 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Recently, well-defined analytical benchmark problems [1–6] have been developed for studying
response control strategies for building and bridge structures subjected to seismic and
wind excitation, by broad consensus effort of the ASCE structural control committee. The
goal of this effort was to develop benchmark models to provide systematic and standardized
means by which competing control strategies, including devices, algorithms, sensors, etc. can
be evaluated. Carefully defined analytical benchmark problems are an excellent alternative
to expensive experimental benchmark test structures. Due to effectiveness of the fixed base
building benchmark effort [2–5], the ASCE structural control committee voted to develop a
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new smart base-isolated benchmark problem. Narasimhan et al. [7–9] have developed the
smart base-isolated benchmark problem, based on input from the ASCE structural
control committee, with the capability to model three different kinds of base isolation
systems: linear elastomeric systems with low damping or supplemental high damping;
frictional systems; bilinear or nonlinear elastomeric systems, or any combination thereof.
The superstructure is assumed to remain linear at all times. A host of control devices
can be considered at the isolation level. No control devices are allowed in the super-
structure.

Base isolation systems, such as sliding and elastomeric bearing systems, reduce the
superstructure response, but with increased base displacements in near-fault motions. Current
practice is to provide nonlinear passive dampers to limit the bearing displacements, however,
this increases the forces in the superstructure and also at the isolation level. Active and
semiactive devices present attractive alternatives to passive nonlinear devices. Active and
semiactive control of linear and nonlinear structures using novel devices such as magnetorheo-
logical (MR) dampers, electrorheological dampers and variable stiffness systems has gained
significant attention in the recent years [10]. The effectiveness of structural control strategies and
different control algorithms has been demonstrated, by many researchers, experimentally and
analytically [5, 10–14, 25, 26].

Participants of this benchmark study can propose control strategies for benchmark base-
isolated building and define, evaluate, and report the results for the proposed strategy. A set of
evaluation criteria have also been developed for the sake of comparison of various control
strategies.

2. STRUCTURAL MODEL

The benchmark structure is a base-isolated eight-storey, steel-braced framed building,
82.4-m-long and 54.3-m-wide, similar to existing buildings in Los Angeles, California. The floor
plan is L-shaped, as shown in Figure 1. The superstructure bracing is located at the
building perimeter. Metal decking and a grid of steel beams support all concrete floor slabs.
The steel superstructure is supported on a reinforced concrete base slab, which is integral
with concrete beams below, and drop panels below each column location. The isolators
are connected between these drop panels and the footings below, as shown in Figure 1.
The superstructure is modeled as a three-dimensional linear elastic system. The superstruc-
ture members, such as beam, column, bracing, and floor slab are modeled in detail. Floor slabs
and the base are assumed to be rigid in plane. The superstructure and the base are
modeled using three master degrees of freedom (DOF) per floor at the center of mass.
The combined model of the superstructure (24 DOF) and isolation system (3 DOF) consists of
27 degrees of freedom. All twenty four modes in the fixed-base case are used in modeling
the superstructure. The superstructure damping ratio is assumed to be 5% in all fixed-base
modes.

The computed natural periods for all 24 fixed-base modes are shown in Table I. The nominal
isolation system consists of 61 friction pendulum bearings and 31 linear elastomeric bearings, as
shown in Figure 1. The nominal isolation system can also be regarded as a linear isolation
system consisting of 92 linear elastomeric bearings and 61 passive friction dampers; since, the
friction pendulum bearings consists of an linear elastic part due to the curvature of the sliding
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surface and friction. While the nominal model contains sliding and linear elastomeric bearings,
participants may replace them with other types of bearings. The total weight of the structure is
202 000 kN.
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Figure 1. (a) Isolation plan; (b) FEM model of superstructure; and (c) elevation view with devices.

Table I. Periods of the superstructure.

North–South East–West Torsion

1 0.78 0.89 0.66
2 0.27 0.28 0.21
3 0.15 0.15 0.12
4 0.11 0.11 0.08
5 0.08 0.08 0.07
6 0.07 0.07 0.06
7 0.06 0.06 0.06
8 0.05 0.06 0.05
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3. ISOLATION MODEL

Several isolation elements are included so that any combination of these can be used to model
the isolation system completely. The isolation elements are elastic, viscous, hysteretic elements
for bilinear elastomeric bearings and hysteretic elements for sliding bearings. The force–
displacement characteristics for friction pendulum, lead rubber bearing and linear isolation
bearings are shown in Figure 2. The hysteretic elements can be uniaxial or biaxial. The linear
elastic and viscous elements are for modeling linear elastomeric bearings and fluid dampers.
They can also be used for modeling bilinear elastomeric isolation systems with corresponding
equivalent linear properties, obtained using appropriate linearization techniques.
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Figure 2. Force–displacement characteristics of bearings.
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The biaxial hysteretic behavior of bilinear elastomeric bearings and/or frictional bearings is
modeled using the biaxial interaction equations of Bouc–Wen model [15] as follows:

Uy
’zx

’zy

( )
¼ a

’Ux

’Uy

( )
� Zw

’Ux

’Uy

( )

Zw ¼
z2xðgsgnð ’UxzxÞ þ bÞ zxzyðgsgnð ’UyzyÞ þ bÞ

zxzyðgsgnð ’UxzxÞ þ bÞ z2yðgsgnð ’UyzyÞ þ bÞ

" #
ð1Þ

where zx and zy are dimensionless hysteretic variables that are bounded by values�1; a; b and g
are dimensionless quantities, Ux; Uy and ’Ux; ’Uy; represent the displacements and velocities in
the x and y directions, respectively, at the isolation bearing or device and Uy is the yield
displacement. Equation (1) accounts for biaxial interaction of both sliding and bilinear
hysteretic bearings. When yielding commences Equation (1) leads to zx ¼ cos y and zy ¼ sin y

provided a=ðbþ gÞ ¼ 1 with y ¼ tan�1ð ’Ux= ’UyÞ and resultant velocity ’U ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
’U2
x þ ’U2

y

q
: The

biaxial interaction can be neglected when the off-diagonal terms of the matrix in Equation (1)
are replaced by zeros. This results in uniaxial model with two independent elements in two
orthogonal directions.

The forces, f ; mobilized in the elastomeric isolation bearings or devices can be modeled by a
elastic–viscoplastic model with strain hardening

fx ¼ kpUx þ cv ’Ux þ ðke � kpÞUyzx ð2Þ

fy ¼ kpUy þ cv ’Uy þ ðke � kpÞUyzy ð3Þ

where ke ¼ pre-yield stiffness, kp ¼ post-yield stiffness, cv ¼ viscous damping coefficient of the
elastomeric bearing or device, Uy is the yield displacement.

Equation (1) can also be used to model sliding bearings with flat or spherical sliding surface,
by means of a small yield displacement Uy (because of rigid plastic behavior and large pre-yield
stiffness) setting cv ¼ 0 and ðke � kpÞ Uy ¼ mN

fx ¼ kpUx þ mNzx ð4Þ

fy ¼ kpUy þ mNzy ð5Þ

where m is the coefficient of friction and N is the average normal force at the bearing (normal
force variation is neglected). In Equations (4) and (5), the terms kpUx and kpUy represent the
re-centering force due to the spherical surface of a friction pendulum bearing or a flat slider.
In a similar manner other devices such as nonlinear fluid dampers can also be modeled using
Equation (1).

The nominal isolation system consists of 61 friction pendulum bearings (or 61 linear bearings
and 61 friction dampers) and 31 linear elastomeric bearings; however, the participants may
replace them with other types of bearings. Three types of base isolation systems are considered
for control design purposes: (1) linear elastomeric isolation system with low damping; (2)
nonlinear friction isolation system representing friction pendulum system; and (3) bilinear
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elastomeric isolation system representing a lead–rubber system. The isolation systems and the
corresponding sample control designs have been described in detail in companion papers
[16–18].

In phase I, the participants can compare the results of their controllers with the results of the
sample active and semiactive controllers presented by Nagarajaiah and Narasimhan [17] for the
nominal linear isolation system. Additionally, they may also compare the results of their
controllers with a preliminary skyhook controller presented by Nagarajaiah and Narasimhan
[17]. They may also compare their passive design with the work of Alhan and Gavin [19].

4. THREE-DIMENSIONAL NONLINEAR DYNAMIC ANALYSIS

Base-isolated buildings are designed such that the superstructure remains elastic. Hence, in
this study the superstructure is modeled by a condensed linear elastic system. Also, the
localized nonlinearities at the isolation level allow condensation of the linear superstructure.
In addition, the equations of motion are developed in such a way that the fixed-base properties
are used for modeling the linear superstructure. The base and the floors are assumed to
be infinitely rigid in plane. The superstructure and the base are modeled using three
master degrees of freedom (DOF) per floor at the center of mass. Each nonlinear isolation
bearing or device is modeled explicitly using the discrete biaxial Bouc–Wen model, and
the forces in the bearings or devices are transformed to the center of mass of the base using
a rigid base slab assumption. All the linear isolation bearings or devices can be
modeled individually or globally by equivalent lumped elements at the center of mass of the
base. The displacement coordinates are shown in Figure 3 and the asymmetric model is
shown in Figure 4. The equations of motion for the elastic superstructure are expressed in the
following form:

Mn�n .Un�1 þ Cn�n ’Un�1 þ Kn�nUn�1 ¼ �Mn�nRn�3ð .Ug þ .UbÞ3�1 ð6Þ

in which, n is three times the number of floors (excluding base), M is the superstructure mass
matrix, C is the superstructure damping matrix in the fixed-base case, K is the superstructure
stiffness matrix in the fixed-base case and R is the matrix of earthquake influence coefficients, i.e.
the matrix of displacements and rotation at the center of mass of the floors resulting from a unit
translation in the X and Y directions and unit rotation at the center of mass of the base.
Furthermore, .U; ’U and U represent the floor acceleration, velocity and displacement vectors
relative to the base, .Ub is the vector of base accelerations relative to the ground and .Ug is the
vector of ground accelerations. The control devices are located at the isolation level only as
shown in Figure 1. The equations of motion for the base are as follows:

RT
3�nMn�n½ð .UÞn�1 þ Rn�3ð .Ug þ .UbÞ3�1�n�1 þMb3�3 ð .Ug þ .UbÞ3�1 þ Cb3�3

’Ub3�1

þ Kb3�3Ub3�1 þ fB3�1 þ fc3�1 ¼ 0 ð7Þ

in which Mb is the diagonal mass matrix of the rigid base, Cb is the resultant damping matrix of
viscous isolation elements, Kb is the resultant stiffness matrix of elastic isolation elements, fB is
the vector containing the nonlinear bearing forces and fc is the vector containing the control
forces. Equation (6) can be reformulated in the modal domain and the fixed-base frequencies,
damping ratios, and modes can be used for modeling the superstructure [20, 21]. Using
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X ¼ fUT UT
b

’UT ’UT
bg

T; the state space equations can be formulated as

’XðtÞ ¼ AXðtÞ þ BuðtÞ þ B�FBðtÞ þ E .UgðtÞ ¼ gðX; u; .UgÞ ð8Þ
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Figure 3. Displacement coordinates of the base-isolated structure.
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%K ¼
K 0

0 Kb

" #
u ¼

0

fc

" #
FB ¼

0

fB

" #

In these equations, A; B; B� and E are condensed system matrices having 54 states derived
from the full three-dimensional finite element model. Equation (8) is solved using Newmark’s
unconditionally stable constant-average acceleration method, which can also be derived from
the trapezoidal rule given by

Xkþ1 ¼ Xk þ
Dt
2
ðgk þ gkþ1Þ ð9Þ

where gkþ1 ¼ gðXkþ1; ukþ1; .Ugðkþ1Þ Þ: This method is implicit, needing iteration. The nonlinear
forces in the isolation bearings, devices and control forces are updated by solving Equations
(1)–(5) using the unconditionally stable semi-implicit Runge–Kutta method [22] suitable for
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Figure 4. Asymmetric base-isolated structure excited by bidirectional ground motion.
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solutions of stiff differential equations. Then Equation (8) is resolved using an iterative
predictor–corrector solution procedure [20, 21] until equilibrium of nonlinear forces is reached
within specified tolerance and convergence is achieved.

5. MATLAB IMPLEMENTATION

The analytical model is implemented using MATLAB [24] and SIMULINK [24] as shown in
Figure 5. The analysis program uses an input data file, a file to read and assemble the required
matrices for input into the nonlinear dynamic analysis block, which is a SIMULINK based S-
function program. The full implementation procedure is shown in Figure 6. Additional inputs to
the nonlinear analysis block are the seismic excitation and the control forces provided by the
control devices. The nonlinear response is calculated using a predictor–corrector algorithm as
explained in the earlier sections. All sensor and control devices can be modeled in this program
as SIMULINK blocks and the outputs of these models fed into the analysis S-function block.

6. CONTROL DESIGN

The benchmark study participants are to define the type, appropriate model, and location of the
sensor(s), control devices, and control algorithms (see Figure 5). The analysis program will
remain invariant to the various control strategies developed and implemented. The various
control strategies can be compared with one another by having the model and evaluation
criteria common to all controllers. The control devices, sensor devices and the control
algorithms can be interfaced to the structural evaluation model through measurement and
device connection outputs, designated ym and ycd respectively. The evaluation outputs ye are
used for the calculation of performance indices. The outputs ym and ycd are specified in the input
files provided with the benchmark problem statement.

I/O Data and
Struct. Information

Form System Matrices Nonlinear Analysis Model

Algorithm & Others

Sensors Components Devices

Integrate into Benchmark
Framework

Simulate
Submit Results and
Code

Figure 5. Schematics of MATLAB/SIMULINK implementation.
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6.1. Sensor models

The sensors must take the following form

’Xs ¼ g1ðX
s; ym; um; tÞ ð10Þ

ys ¼ g2ðX
s; ym; um; v; tÞ ð11Þ

where Xs are the states of the sensor, v is the measurement noise vector, um is a vector of control
device continuous time responses and ys is the output of the sensor in units of volts (Figure 7).
um may consist of device forces and/or stroke that may be needed for feedback into the
controller.

6.2. Control algorithm

Control algorithms may be designed to work with active or semiactive systems. The discrete
form of the control algorithms may be written as

Xc
kþ1 ¼ g3ðX

c
k; y

s
k;kÞ ð12Þ

uk ¼ g4ðX
c
k; y

s
k;kÞ ð13Þ

where Xc
k is the discrete state vector at time t ¼ kDt; ysk is the discretized sensor model output

and uk is the discrete control command from the control algorithm (Figure 8).
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6.3. Control devices

Control devices may be designed neglecting the dynamics of the devices, although including
device dynamics is strongly encouraged. Control devices may only be placed at the isolation
level and their possible locations are specified in the input files provided with the benchmark
problem statement. The device models can be interfaced with the building model by including
the dynamics of the device (Figure 9) as follows

’Xcd ¼ g5ðX
cd; ycd; uk; tÞ ð14Þ

u ¼ g6ðX
cd; ycd; uk; tÞ ð15Þ

yf ¼ g7ðX
cd; ycd; uk; tÞ ð16Þ

where the continuous states of the devices are represented by Xcd: If the dynamics are neglected,
then the model is

u ¼ g8ðycd; uk; tÞ ð17Þ

yf ¼ g9ðycd; uk; tÞ ð18Þ
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7. EVALUATION CRITERIA

The following nine evaluation criteria are defined for the benchmark problem based on both
maximum and RMS responses of the building. For each control design, these criteria must be
evaluated for all seven earthquakes, in two orthogonal directions. In the following discussion,
the term ‘uncontrolled’ refers to the isolation system containing linear and nonlinear bearings,
but with no supplemental passive dampers or control devices.

1. Peak base shear (isolation-level) in the controlled structure normalized by the
corresponding shear in the uncontrolled structure

J1ðqÞ ¼
maxt jjV0ðt; qÞjj

maxt jj #V0ðt; qÞjj

2. Peak structure shear (at first storey level) in the controlled structure normalized by the
corresponding shear in the uncontrolled structure

J2ðqÞ ¼
maxt jjV1ðt; qÞjj

maxt jj #V1ðt; qÞjj

3. Peak base displacement or isolator deformation in the controlled structure normalized by
the corresponding displacement in the uncontrolled structure

J3ðqÞ ¼
maxt;i jjdiðt; qÞjj

maxt;i jj #diðt; qÞjj

4. Peak inter-storey drift in the controlled structure normalized by the corresponding inter-
storey drift in the uncontrolled structure

J4ðqÞ ¼
maxt;f jjdf ðt; qÞjj

maxt;f jj #df ðt; qÞjj

Replace the contents of this block
with a model of your devices

Users can replace the contents with their own devices

2
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1

f
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velocity (X),  velocity (Y),
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2

u
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Figure 9. Control devices implementation.
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5. Peak absolute floor acceleration in the controlled structure normalized by the
corresponding acceleration in the uncontrolled structure

J5ðqÞ ¼
maxt;f jjaf ðt; qÞjj
maxt;f jj#af ðt; qÞjj

6. Peak force generated by all control devices normalized by the peak base shear in the
controlled structure

J6ðqÞ ¼
maxt k

P
k Fkðt; qÞk

maxt jjV0ðt; qÞjj

7. RMS base displacement in the controlled structure normalized by the corresponding RMS
base displacement in the uncontrolled structure

J7ðqÞ ¼
maxi jjsd ðt; qÞjj
maxi jjs #d

ðt; qÞjj

8. RMS absolute floor acceleration in the controlled structure normalized by the
corresponding RMS acceleration in the uncontrolled structure

J8ðqÞ ¼
maxf jjsaðt; qÞjj
maxf jjs#aðt; qÞjj

9. Total energy absorbed by all control devices normalized by energy input into the
controlled structure

J9ðqÞ ¼

P
k

� R Tq

0
Fkðt; qÞvkðt; qÞ dt

�
R Tq

0 hV0ðt; qÞ ’Ugðt; qÞi dt

where, i ¼ isolator number, 1; . . . ;Ni ðNi ¼ 8Þ; k ¼ device number, 1; . . . ;Nd ; f ¼ floor
number, 1; . . . ;Nf ; q ¼ earthquake number: 1; . . . ; 5; t ¼ time, 04t4Tq; h�i ¼ inner product;
jj � jj ¼ vector magnitude incorporating NS and EW components.

8. EARTHQUAKES

The earthquakes used in this study are both the fault-normal (FN) and fault-parallel (FP)
components of Newhall, Sylmar, El Centro, Rinaldi, Kobe, Ji-ji and Erzinkan as shown in Figure
10. All the excitations are used at the full intensity for the evaluation of the performance indices.

9. CONTROL IMPLEMENTATION AND RESTRICTIONS

1. The outputs that are available for direct measurement are the absolute accelerations at
the center of mass of all floor levels and the base. The absolute accelerations consist of
two translational and one rotational direction at each level. In addition, the absolute
accelerations and relative displacements at all device locations in two translational
directions and the ground accelerations are available for measurement. Absolute velocity
measurements may be added by passing the measured accelerations through an
appropriate second order filter [2, 3].
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2. The digitally implemented controller should have a sampling time between 0.001 and 0.01 s.
3. The A/D and D/A converters for the digital controller have a 16-bit precision and a span

of �10V.
4. Small RMS noise (at least 0.05V) should be added to the measured outputs.
5. All control devices should be placed only at the isolation level and no provision is made

for their placement in the superstructure. A maximum of ninety-two control devices in the
x-direction and another ninety-two control devices in the y-direction can be placed at the
bearing locations.

6. The designer of the controller must justify that the proposed algorithm can be
implemented with the existing hardware and computational resources.

7. The control algorithm has to be stable and closed-loop stability has to be ensured.
8. The algorithm must be implemented for all seven earthquakes provided (i.e. Newhall,

Sylmar, El Centro, Rinaldi, Kobe, Ji-ji and Erzinkan) and results presented in terms of
the performance indices in each direction of the excitation considered.
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Figure 10. Time-histories of earthquake records. FP fault Parallel; FN fault Normal;
EW East–West; NS North–South.

Copyright # 2005 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2006; 13:573–588

S. NARASIMHAN ET AL.586



9. The isolation type and parameters can be changed as per the designer’s requirement.
However, their locations and total number in the building are fixed (a total of 92 bearings).

10. The maximum total force generated by the control devices in each direction must be less than
or equal to the maximum total nonlinear or/and linear forces generated by the uncontrolled
isolation system, i.e. the maximum total force in the controlled isolation system cannot
exceed twice that of the maximum total force in the uncontrolled isolation system.

11. If control dynamics are included, the control signal to each device should be less than or
equal to an absolute maximum of 10V.

12. Participants of this study are required to submit electronically a complete set of
MATLAB files used for their control strategies.

9.1. Matlab and simulink files

Further details, data files, and MATLAB and SIMULINK files can be found at
www.ruf.rice.edu/�nagaraja/baseisolationbenchmark.htm.

9.2. Note on phase II

In phase II, the participants can compare the results of their controllers with the sample
controllers presented by Nagarajaiah and Narasimhan [23] for nonlinear friction isolation
system and/or the sample controller presented by Erkus and Johnson [18] in case they consider
bilinear elastomeric isolation system such as lead–rubber isolation systems.

10. CONCLUDING REMARKS

A smart base-isolated building benchmark problem with a broad set of carefully chosen
parameter sets, performance measures and guidelines to the participants has been defined in this
paper. A new nonlinear dynamic analysis program has been developed and made available to
facilitate direct comparison of results of different control algorithms.

Participants of this benchmark study can propose different control strategies for the smart
base-isolated building problem. Participants can define, evaluate, and report the results for the
proposed strategy. The control algorithms may be passive, active or semi-active. In phase I, the
participants can compare the results of their controllers with the results of the sample active and
semiactive controllers presented by Nagarajaiah and Narasimhan [16, 17] for the nominal linear
isolation system. Additionally, they may also compare the results of their controllers with the
preliminary skyhook controller presented by Nagarajaiah and Narasimhan [17]. In phase II the
participants can compare the results of their controllers with the sample controllers presented by
Nagarajaiah and Narasimhan [23] for nonlinear friction isolation system and/or the sample
controller presented by Erkus and Johnson [18] in case they consider bilinear elastomeric
isolation system such as a lead–rubber isolation system.

ACKNOWLEDGEMENTS

Partial funding provided by the National Science Foundation, CAREER Award 99-96290, and CAREER
Award 00-94030, is gratefully acknowledged. The authors would like to thank Professor Bill Spencer,
University of Illinois at Urbana-Champaign and Professor W. D. Iwan, CalTech, for their suggestions.

Copyright # 2005 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2006; 13:573–588

PROBLEM DEFINITION 587



REFERENCES

1. Caughey TK. The benchmark problem. Earthquake Engineering and Structural Dynamics 1998; 27(11):1125.
2. Spencer BF, Dyke SJ, Deoskar HS. Benchmark problems in structural control: part 1}active mass driver system.

Earthquake Engineering and Structural Dynamics 1998; 27(11):1127–1139.
3. Spencer BF, Dyke SJ, Deoskar HS. Benchmark problems in structural control: part 2}active tendon system.

Earthquake Engineering and Structural Dynamics 1998; 27(11):1141–1147.
4. Ohtori Y, Christenson RE, Spencer BF, Dyke SJ. Benchmark problems in seismically excited nonlinear buildings.

Journal of Engineering Mechanics (ASCE) 2004; 130(4):366–385.
5. Yang JN, Agrawal A, Samali B, Wu JC. A benchmark problem for response control of wind excited tall buildings.

Journal of Engineering Mechanics (ASCE) 2004; 130(4):437–446.
6. Dyke SJ, Caicedo JM, Turan G, Bergman LA, Hague S. Phase 1: Benchmark control problem for seismic response

of cable-stayed bridges. Journal of Structural Engineering 2003; 129(7):857–872.
7. Narasimhan S, Nagarajaiah S, Gavin H, Johnson E. Benchmark problem for control of base isolated buildings.

Proceedings of the 3rd World Conference on Structural Control, Como, Italy, 2002. CDROM.
8. Narasimhan S, Nagarajaiah S, Johnson EA, Gavin HP. Smart base isolated building benchmark problem.

Proceedings of the 16th Engineering Mechanics Conference, ASCE, University of Washington, 2003. CDROM.
9. Narasimhan S, Nagarajaiah S, Johnson EA, Gavin HP. Smart base isolated benchmark building. Part I: problem

definition. Proceedings of the 4th International Workshop on Structural Control and Health Monitoring, Columbia
University, 10–11 June, 2004. CDROM.

10. Spencer BF, Nagarajaiah S. State of the art of structural control. Journal of Structural Engineering ASCE 2003;
129(7):845–856.

11. Yang JN, Danielians A. Aseismic hybrid control systems for building structures. Journal of Engineering Mechanics
(ASCE) 1991; 117(4):836–853.

12. Yang JN, Li Z, Liu S. Control of hysteretic system using velocity and acceleration feedbacks. Journal of Engineering
Mechanics (ASCE) 1992; 118(11):2227–2245.

13. Yang JN, Li Z, Vongchavalitkul S. Stochastic hybrid control of hysteretic structures. Journal of Probabilistic
Engineering Mechanics 1994; 9:125–133.

14. Yang JN, Wu J, Agrawal A. Sliding mode control of nonlinear and hysteretic structures. Journal of Engineering
Mechanics (ASCE) 1995; 121(12):1386–1390.

15. Park YJ, Wen YK, Ang AHS. Random vibration of hysteritic systems under bi-directional ground motions.
Earthquake Engineering and Structural Dynamics 1986; 14(4):543–557.

16. Nagarajaiah S, Narasimhan S. Phase I: controllers for benchmark base isolated building. Part I. Proceedings of the
4th International Workshop on Structural Control and Health Monitoring, Columbia University, 10–11 June, 2004.

17. Nagarajaiah S, Narasimhan S. Smart base isolated benchmark building phase I. Part II sample controllers for linear
isolation system. Journal of Structural Control and Health Monitoring 2006.

18. Erkus B, Johnson EA. Smart base isolated benchmark building. Part III: phase II sample controller for bilinear
isolation. Journal of Structural Control and Health Monitoring 2006.

19. Alhan C, Gavin HP. Parametric analysis of passive damping in base isolation. Proceedings of the 16th Engineering
Mechanics Conference, ASCE, University of Washington, 2003. CDROM.

20. Nagarajaiah S, Reinhorn AM, Constantinou MC. Nonlinear dynamic analysis of 3-d-base-isolated structures.
Journal of Structural Engineering 1991; 117(7):2035–2054.

21. Nagarajaiah S, Reinhorn AM, Constantinou MC. 3D-BASIS: nonlinear dynamic analysis of three dimensional base
isolated structures}part 2. Report No. NCEER-91-0005, National Center for Earthquake Engineering Research,
State University of New York, Buffalo, 1991.

22. Rosenbrook HH. Some general implicit processes for the numerical solution of differential equations. Computer
Journal 1964; 18:50–64.

23. Nagarajaiah S, Narasimhan S. Smart base isolated benchmark building phase II. Part IV sample controllers for
nonlinear friction isolation system. www.ruf.rice.edu/�nagaraja/baseisolationbenchmark.htm

24. MATLAB. The Math Works, Inc., 2000.
25. Yang JN, Agrawal A, Chen S. Optimal polynomial control of seismically excited non-linear and hysteretic

structures. Earthquake Engineering and Structural Dynamics 1996; 25(11):1211–1230.
26. Yang JN, Li Z, Wu J, Hsu I. Control of sliding-isolated buildings using dynamic linearization. Journal of

Engineering Structures 1994; 16(6):437–444.

Copyright # 2005 John Wiley & Sons, Ltd. Struct. Control Health Monit. 2006; 13:573–588

S. NARASIMHAN ET AL.588


