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Stability of Elastomeric Isolation Bearings: Experimental
Study

Ian Buckle1; Satish Nagarajaiah2; and Keith Ferrell3

Abstract: Elastomeric isolation bearings are required to be stable at high shear strains, which occur during strong earthquake
rigorous determination of the critical axial load during design is important. Currently, the critical load is determined using th
displacement Haringx theory and modified to account for large shear strains by an approximate correction factor. The objectiv
study is to experimentally determine the effect of horizontal displacement or shear strain on critical load and to study the validi
approximate correction factor. Experiments were conducted on a series of elastomeric bearings with low shape factors. Test proc
test results are presented in detail. It is shown that the critical load decreases with increasing horizontal displacement or shear
also shown that substantial critical load capacity exists at a horizontal displacement equal to the width of the bearing and is no
predicted by the correction factor. It is further shown that the approximate formula is not conservative at smaller displacements a
conservative at larger displacements. The critical loads obtained from experiments are compared with results from finite elemen
and nonlinear analytical solutions; the comparisons indicate that the effect of large horizontal displacements on the critical loa
reliably predicted.
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Introduction

An elastomeric isolation bearing consists of a number of rubb
layers and steel shims, bonded in alternating layers, to produc
vertically stiff but horizontally flexible isolator. This flexibility
lengthens the fundamental period of the isolated building a
reduces the seismic forces in the superstructure. But this red
tion may be accompanied by large horizontal displacements in
isolators, which, together with their lateral flexibility, may lead t
significant reduction in their critical axial load~Buckle and Kelly
1986; Koh and Kelly 1986; Buckle and Liu 1994; Nagarajaia
and Ferrell 1999!.

The design approach used currently to compute the criti
load, Pcro, at small displacements is to use Haringx’s theo
~1948, 1949a,b!:

Pcro5
~GAs!eff

2 FA114
PE

~GAs!eff
21G (1)

where PE5p2(EI)eff /l
2; (GAs)eff5effective shear rigidity and

(EI)eff is the effective flexural rigidity;E is the bending modulus;
and G is the shear modulus of rubber. The following relation
e
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~Buckle and Kelly 1986; Koh and Kelly 1986! can be used to
establish the effective shear rigidity and effective flexural rigidit

~GAs!eff5GA~ l / l r ! (2)

~EI !eff5ErI ~ l / l r ! (3)

where l 5combined height of the rubber layers and steel plat
excluding the top and bottom plates;l r5total thickness of all
rubber layers5(t ~t5rubber layer thickness!; A5bonded rubber
area; andI 5moment of inertia of the bearing about the axis o
bending,

Er5E0~110.742S2! (4)

where E05elastic modulus of rubber, which is approximatel
equal to four times the shear modulus,G, andS, the shape factor,
is defined as

S5
loaded area of rubber layer

force-free area of rubber layer
(5)

Currently, the effect of large horizontal displacements is a
counted for approximately by reducing the value of the critic
load,Pcro, using a correction factor equal to the ratio of effectiv
column area and actual column area at large horizontal displa
ment~Buckle and Liu 1993!. For a rectangular bearing, this facto
gives the following value forPcr :

Pcr5Pcro@12D/B# (6)

where Pcr5critical load at horizontal displacement,D; Pcro

5critical load given by Haringx’s theory; andB5bearing width.
The horizontal stiffness is dependent on the axial load, and

be approximated by~Buckle and Kelly 1986!:

Kh5Kh* F12S P

Pcr
D 2G (7)
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whereP5axial load;Kh* 5horizontal stiffness at zero axial load
andKh5modified horizontal stiffness.

The experimental study presented in this paper involves te
on elastomeric bearings in order to investigate the variation
critical load with horizontal displacement or shear strain. Te
procedure and test results are presented in detail. The validity
the approximate result in Eq.~6! is evaluated. Comparisons o
experimental results with ADINA finite element analysis resul
of Liu et al. ~personal communication, 2001! are presented. In a
companion paper, Nagarajaiah and Ferrell~1999! developed a
nonlinear analytical model and verified it using the experimen
results presented in this study. The comparisons with the res
of the nonlinear analytical model are also presented.

Bearings Tested

The multilayer elastomeric bearings tested consist of natural r
ber layers and steel shims bonded in alternating layers as sh
in Fig. 1~a!. A total of 12 bearings were tested. Nine of the squa
bearings were five in. by five in. (127 mm3127 mm) in plan.
Three of the square bearings were ten in. by ten in. (254 m
3254 mm) in plan. Bearing properties are shown in Table 1 a
Fig. 1~a!; the 10 in. bearing properties are shown in parenthes
All bearings had bolted connections at the top and bottom
prevent overturning. The rubber layer thickness was varied
order to study bearings with different shape factors. This thic
ness is typically less than 0.5 in.~12.7 mm!; However, four of the
bearing series tested~100, 200, 400, and 500! had layer thick-
nesses greater than or equal to 0.5 in.~12.7 mm!, to study the
effect of low shape factor or increased slenderness. The 300 se
and 600 series of bearings had 0.25 in.~6.35 mm! rubber layer
thickness. The rubber shear modulus,G, was estimated to be 0.2
ksi ~1.38 MPa! at 0% shear strain and 0.136 ksi~0.938 MPa! at
100% shear strain~Nagarajaiah and Ferrell 1999!. The rubber
cover was 0.125 in.~3.18 mm! thick for all bearings. The steel
shim thickness was varied in order to maintain the same ove
height. All bearings tested had 1 in.~25.4 mm! thick end plates.

Test Setup

The elastomeric bearings were tested using the uniaxial sin
bearing test facility at the Earthquake Engineering Research C
ter at the Univ. of California at Berkeley@see Figs. 1~a and b!#.
The test setup permitted simultaneous application of vertical a
horizontal loads. The two vertical actuators on either side of t
bearing@See Fig. 1~b!# generated the vertical load. During testing
the load in each actuator was adjusted to maintain the requ
vertical load taking into account the overturning moment in th
bearings and the increasing inclination of actuators~from the ver-
tical! as the horizontal displacement increases. A similar corr
tion was also necessary to the horizontal actuator with increas
shear displacements.

The test was run with the horizontal actuator under displac
ment control and the vertical actuator under force control, i.e.,
horizontal displacement was held at a specified value while
vertical load was increased until critical load conditions occurre
For the purpose of this experiment, a bearing was considered
be in critical state when the horizontal force became zero or ne
tive. Horizontal forces and vertical displacements were theref
monitored throughout the test. This protocol assured the safet
the test system as critical conditions were approached.
4 / JOURNAL OF STRUCTURAL ENGINEERING / JANUARY 2002
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Test Procedure

Fifteen channels were used to record and monitor data colle
at a sampling frequency of 50 Hz. The test sequence involved
cycles of scrag test, five cycles of shear test 1, monotonic stab
test, and five cycles of shear test 2. The testing procedure is s
marized below. For a predetermined shear displacement,u, ~for
example, 0.2B, B5width of the square bearing! the following
sequence of tests were performed:
1. Scrag test~Cyclic test!

• Constant axial loadP5P1 applied,
• Five cycles of shear displacement,6u, applied.

2. Shear test 1~Cyclic test!
• A constant axial loadP5P1 applied,
• Five cycles to shear displacement,6u, applied.

3. Stability/critical load test~quasistatic test! as shown in Figs.
2~a and b!

Fig. 1. ~a! Details of elastomeric bearings tested;~b! uniaxial single
bearing test rig; and~c! 10 in. bearing displaced to 0.6B in test rig



Table 1. 5 and 10 in. Elastomeric Bearing Detailsa

Bearings
tested

Nominal size
B3B83Hb

(in.3in.3in.)

Number of
rubber
layers

Thickness
of rubber

layers
~In.!

Thickness
of steel
shim
~In.!

Shape
factor

101, 102, 103 53534.375 3 0.75 0.0625 1.67
201, 202, 203 53534.375 4 0.50 0.1250 2.50
301, 302, 303 53534.385 8 0.25 0.0550 5.00

401 1031034.375 3 0.75 0.0625 3.33
501 1031034.375 4 0.50 0.1250 5.00
601 1031034.385 8 0.25 0.0550 10.00

a1 in.52.54 mm.
bB5width of the square bearing,B85breadth;H5height of the bearing.
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• Axial load P5P1 applied.P155, 10, 20, 80, 80, 80 kip for
100, 200, 300, 400, 500, and 600 series, respectiv
@1 kip54.448 kN#,

• Predetermined initial displacement,u, applied and held,
• The axial load,P, increased monotonically until the hori-

zontal force,F, became negative,
• The horizontal displacement brought to zero by unloadin

4. Shear test 2~Cyclic test!
• Constant axial loadP5P1 applied,
• Five cycles to shear displacement,6u, applied.

Steps 1–4 were repeated for the same bearing with a differ
initial displacement,u, of 0.2B, 0.4B, 0.6B, 0.8B, 1.0B, and
1.2B. The scrag and shear tests were essentially the same, ex
that the purpose of the scrag test was to precondition the bea
until steady state bearing properties were achieved. The sh
tests were repeated to observe changes in bearing properties
fore and after each stability test. While the scrag and shear t
were conducted under constant axial load and cyclic shear
placement, the quasistatic stability tests were conducted with c
stant displacement and monotonically varying axial load.

Test Results

The results of the critical load tests are highlighted in this pap
The time histories of horizontal displacement,u, axial load,P,
and shear force,F, are shown in Fig. 2~a!. From Fig. 2~a! it is
evident that as the axial force,P, is increased, the shear force,F,
decreases and becomes negative, while the horizontal displ
ment remains at1u.

Fig. 2~b! shows the variation of shear force,F, with increasing
axial load,P, for each test performed at a predetermined displa
mentu50.2B, 0.4B, 0.6B, 0.8B, and 1.0B, for bearing 302. It is
shown that, for a given displacement,u, as the axial load,P, is
increased the shear force decreases until it becomes negative

Determination of Critical Load from Test Results

In the preliminary evaluation of test results the critical loads we
estimated using the data in Fig. 2~b! and following procedure: the
value of the axial load at which the horizontal load is zero w
defined as the critical load for that shear displacement. This p
cedure gives ‘‘constrained’’ critical loads, in that the bearing
held against further horizontal displacements as the critical loa
approached~Buckle and Liu 1994!. These boundary conditions
are not typical of those used in practice where the horizon
displacement is unconstrained and free to increase as neces
Upon further analysis of the test data, using a new and accu
t
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procedure developed by Nagarajaiah and Ferrell~1999! based on
equilibrium paths, the unconstrained critical loads were dete
mined @Nagarajaiah and Ferrell 1999; Liu et al.~personal com-
munication~2001!!# and it is these results which are presente
and discussed in this paper.

The axial load—horizontal displacement,P–u, variation is
shown in Fig. 2~c! as a function of shear force for bearing 302
The equilibrium path, a smooth curve passing through discre
points, shown in Fig. 2~c!, at each shear force level, passe
through a limit point, which is the critical load. In Fig. 2~c! the
equilibrium paths are unstable past the limit point~Nagarajaiah
and Ferrell 1999!; hence, the critical load must decrease wit
increasing horizontal displacement. The critical load,Pcr , ob-
tained from Fig. 2~c! is shown in Fig. 3~a! as a function of hori-
zontal displacement. The shear force—horizontal displaceme
curves in Fig. 3~b! can be used to verify the critical load, since, a
Pcr the horizontal tangential stiffness goes to zero.

The shear force—horizontal displacement,F –u, curves are
shown in Fig. 3~b! as a function of axial load for bearing 302.
Two important features to be noted in Fig. 3~b! are as follows: the
F –u curves pass through a maximum as the horizontal displac
ment increases, under constant axial load; the shear force
horizontal displacement at which the maximum occurs decrea
with increasing axial load. In Fig. 3~b!, the horizontal tangential
stiffness,Kh , decreases with increasing axial load and horizont
displacement.

Evaluation of Test Results

In Fig. 3~a!, it is evident that significant reduction inPcr occurs at
horizontal displacements equal to the width of the bearing,B
55 in. The error bars in Fig. 3~a! represent the variability of the
recovered test results; since, the tests were performed only at 1
3, 4, and 5 in. horizontal displacements and the points in betwe
these displacements were recovered by curve fitting technique

The moment—horizontal displacement,M –u, curves are
shown in Fig. 4~a! as a function of axial load for bearing 302. The
moment shown is an approximate moment, which was recover
from loadcell measurements. Since rotation measurements w
not recorded, moment–rotation curves could not be generated
Fig. 4~a! the M –u curve increases with increasing axial load—
trend typically observed in moment–rotation curves of elast
meric bearings—and hence, moment resisting capability increa
with increasing axial load. The moment is a nonlinear function o
displacement.

The height reduction due to horizontal displacement of th
bearing 302 is shown in Fig. 4~b!, as a function of axial load. It is
JOURNAL OF STRUCTURAL ENGINEERING / JANUARY 2002 / 5
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Fig. 2. Stability test:~a! Force, P, F, and displacement, u, time hi
tories; ~b! Axial load–shear force variation as function of displac
ment, u; and~c! Axial load–horizontal displacement variation as
function of shear force, F
.

,
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evident from Fig. 4~b! that the height reduction increases as th
horizontal displacement and axial load increase.

The variation of critical load,Pcr , with respect to horizontal
displacement for the bearings 103 and 201 is shown in Figs. 5~a
and b!. Again, it can be observed from Figs. 5~a and b! that
critical load decreases with increasing horizontal displaceme
However, in these two sets of bearings the decrease inPcr is not
as significant as in bearing 302. The shear force—horizontal d
placement,F –u, curves are shown as a function of axial load in
Figs. 6~a and b!. The severe nonlinearities are clearly evident in
Figs. 6~a and b!, similar to bearing 302.

The height reduction due to horizontal displacement of th
bearings 103 and 201 is shown in Figs. 7~a and b!, as a function
of axial load. Again, it is evident that the height reduction in
creases with increasing horizontal displacement and axial load

The shear force—horizontal displacement,F –u, curves are
shown as a function of axial load in Fig. 8 for 10 in. bearings 401

Fig. 3. Stability test:~a! Critical load as function of horizontal dis-
placement and~b! shear force–displacement curves as function o
axial load
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501, and 601. The critical load variation orPcr–u curves could
not be obtained from test results for 401, 501, and 601 ser
bearings because the bearings were not loaded to such high le
of axial load due to test setup limitations. From Fig. 8, a simila
trend as in 5 in. bearings is observed.

Finite Element Analysis

Liu et al. ~2002! have studied the stability of the elastomeric bea
ings tested in this study, using the ADINA~1999! finite element
program. The Mooney–Rivlin material model suited for rubbe
undergoing large strains was adopted. In the Mooney–Riv
model ~ADINA 1999!, it is assumed that the bulk modulus is
several thousand times as large as the shear modulus of rub
which is almost incompressible; this assumption is incorporat
by removing the restriction that the invarianto

t I 351 and includ-
ing the hydrostatic term in the strain energy function to obtain

o
t W5C1~o

t I 123!1C2~o
t I 223!1WH~o

t I 3!, (8)

Fig. 4. Stability test:~a! Moment–displacement curves as functio
of axial load and~b! height reduction due to horizontal displacemen
as function of axial load levels for bearing 302
ls

r,

where o
t W5strain energy density per unit original volume;WH

5hydrostatic work term;o
t I i5 invariants given in terms of the

components of the Cauchy–Green deformation tensor; andC1

andC25material constants. Modified form~ADINA 1999! of Eq.
~8! used for displacement/pressure formulation is

o
t W̄5C1~o

t J123!1C2~o
t J223!11/2k~o

t J321!2 (9)

whereo
t Ji5reduced invariants.

An incremental nonlinear analysis with an updated Lagrang
formulation was used, wherein, all kinematic nonlinearities, lar
displacements/rotations and large strains were accounted
Newton–Raphson iterations were used in which both nodal po
displacements and pressure variables were updated incremen
during each iteration. In order to minimize the computational e
fort, a plane strain restriction was imposed and the bearings w
modeled as strip bearings~of unit breadth!. The boundary condi-
tions imposed were appropriate for plane strain condition. Als
fixity at the bottom plate and the top plate, free to translate ho
zontally and vertically but restrained against rotation, were mo
eled. The material properties were similar to the tested bearin
shear modulusG50.136 ksi ~0.938 MPa!, bulk modulus K

Fig. 5. Stability test: Critical load as function of horizontal displace
ment ~a! bearing 103 and~b! bearing 201
JOURNAL OF STRUCTURAL ENGINEERING / JANUARY 2002 / 7
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5408, 420 ksi~2816 GPa!, Poisson’s ratiog50.499667, and
steel shim properties were Young’s modulusEs530,000 ksi
~206.85 GPa!, yield stresssy544 ksi ~303.38 MPa!, strain hard-
ening modulusEt51,500 ksi~10.35 GPa!, and Poisson’s ratiog
50.2. The parametersC150.0424 ksi ~0.292 MPa! and C2

50.0256 ksi ~0.177 MPa! were used for the Mooney–Rivlin
model.

The stability of the bearings was determined by the followi
procedure involving equilibrium paths~Nagarajaiah and Ferrell
1999!. The bearings were first deformed in shear to a prede
mined shear displacement by means of a constant shear forc
shown in Fig. 9. Then, additional shear displacements were m
tored as the axial load, in the form of vertical pressure at the
surface of the bearing, shown in Fig. 9, was monotonically
creased up to the limit point of the equilibrium path. The equili
rium path past the limit point could not be traced as the inc
mental solution failed. The critical load is the axial load at th
limit point of each equilibrium path~Nagarajaiah and Ferrell
1999!. This procedure was repeated for increasing values of ini
shear displacement; the corresponding critical load—horizon

Fig. 6. Stability test: Shear force–displacement curves as function
axial load~a! bearing 103 and~b! bearing 201
8 / JOURNAL OF STRUCTURAL ENGINEERING / JANUARY 2002
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displacement values were obtained. Complete details of the fi
element model and analysis results can be found in Liu et
~2002!.

Evaluation of Analysis Results

The variation of normalized critical load with normalized hor
zontal displacement computed using the ADINA finite eleme
program is presented in Figs. 10 and 11, for the 100, 200, 300
400, 500, 600 bearing series, respectively. The results from
nonlinear analytical model developed by Nagarajaiah and Fer
~1999! in a companion paper are also shown for the same se
bearings. The comparisons with ADINA results for 100 and 4
series bearings are not shown, as reliable results could no
obtained due to convergence problems experienced in the fi
element solution for these bearings. The critical load at a giv
shear displacement is normalized with respect to the critical lo
at zero-shear displacement. Similarly, the horizontal displacem
is normalized with respect to the width of the bearing. This

of Fig. 7. Stability test: Height reduction due to horizontal displac
ment as function of axial load levels~a! bearing 103 and~b! bearing
201
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Fig. 8. Stability test: Shear force–displacement curves as function
axial load~a! bearing 401;~b! bearing 501, and~c! bearing 601
he
na-
necessary since in the finite element analysis, strip bearings
unit breadth were analyzed under plane strain condition. Hen
the results cannot be compared directly since the actual breadt
the bearings is either 5 in.~127 mm! or 10 in. ~254 mm!. The
comparison in Figs. 10 and 11 indicate good agreement for bot
in. ~127 mm! and 10 in.~254 mm! bearings with different shape
factors. The reduction in critical load with increasing horizont
displacement is captured in both the analytical model results a
the ADINA results. The comparisons indicate that the effect
large horizontal displacements on the critical load can be reliab
predicted. It is worth noting that a two degree of freedom nonli
ear analytical model~Nagarajaiah and Ferrell 1999! can capture
the complex nonlinear behavior adequately as compared to
finite element model.

It is evident from the results in Figs. 10 and 11 that substant
critical load capacity exists at a horizontal displacement equal
the width of the bearing and is not zero, as predicted by t
correction factors used in design to account for large shear d
placements. These factors are not conservative at smaller
placements and overly conservative at larger displacements.

It is also important to note that 200 series bearings with sha
factor, S52.5, and rubber layer thickness,t50.5 in. ~12.7 mm!
exhibits a similar reduction in critical load with horizontal dis
placement, as compared to 500 series bearings withS55, andt
50.5 in. ~12.7 mm!. A similar observation can be made when th
results of 100, 300 series bearings and 400, 600 series bear
are compared. Hence, the rubber layer thickness seems to h
stronger influence than the shape factor on the decrease in
critical load with horizontal displacement. This same observati
may be made from the data in Table 2. In this table the ratio ofPcr

~at u5B! to Pcr ~at u50! is given for each of the bearings. Thes
data are obtained from Figs. 10 and 11, and based on analyt
results for series 400 from Nagarajaiah and Ferrell~1999!. Again
it may be seen that the critical load ratio atu5B, decreases with
decreasing layer thickness. It might also be said that this ra
decreases with increasing shape factor but the trend is incon
tent. There is a stronger relationship between critical load ra
and layer thickness than with shape factor.

Conclusions

Experiments performed on a series of elastomeric bearings h
been presented. Tests were performed with specific objectives
finding the effect of horizontal displacement or shear strain on t
critical load and to evaluate the existing design approaches. A
lytical predictions were made.

f

Fig. 9. Finite element model subjected to constant shear force, F, a
monotonically increasing axial force, P
JOURNAL OF STRUCTURAL ENGINEERING / JANUARY 2002 / 9
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The conclusions based on the test results and the analysis
sults are as follows:
1. The critical load decreases with increasing horizontal d

placement or shear strain;
2. The horizontal stiffness decreases with increasing axial lo

and horizontal displacement;

Fig. 10. Critical load as function of horizontal displacement
10 / JOURNAL OF STRUCTURAL ENGINEERING / JANUARY 2002
re-

-

d

3. Moment is a nonlinear function of displacement and the m
ment resisting capability increases with increasing axi
load;

4. Height reduction of the bearing increases with increasi
horizontal displacement and axial load;

5. Substantial critical load capacity exists at a horizontal d
placement equal to the width of the bearing and is not equ
to zero, as predicted by the correction factors used in desi

6. The correction factors are not conservative at smaller d
placements and overly conservative at larger displacemen
and

7. The rubber layer thickness seems to have greater influe
than the shape factor on the decrease in the critical load w
horizontal displacement.

Fig. 11. Critical load as function of horizontal displacement

Table 2. Critical Load Ratios atu5B

Bearing
series

Shape
factor

S

Rubber layer
thickness

t

Critical load
ratio

Pcr /Pcr0

100 1.67 0.75 0.59
400 3.33 0.75 0.55
200 2.50 0.50 0.35
500 5.00 0.50 0.28
300 5.00 0.25 0.12
600 10.00 0.25 0.07
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The aforementioned conclusions are based on a limited se
experimental results of bearings with relatively low shape facto
Further experimental studies are necessary to evaluate bea
with larger shape factors.
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