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STABILITY OF ELASTOMERIC SEISMIC ISOLATION BEARINGS

By Satish Nagarajaiah,1 Member, ASCE, and Keith Ferrell,2 Associate Member, ASCE

ABSTRACT: Elastomeric seismic isolation bearings are subjected to large axial loads and lateral displacements
during strong earthquakes. The existing Koh-Kelly model for elastomeric bearings accounts for axial load effects
on horizontal stiffness. This linear model is based on small displacements and rotations and predicts stable
postcritical behavior or increasing critical load with increasing horizontal displacement; however, unstable
postcritical behavior is observed in the bearing test results presented in this study. The analytical model developed
in this study, based on the Koh-Kelly model, includes large displacements, large rotations, and nonlinearity of
rubber, and it predicts unstable postcritical behavior. The formulation of the analytical model, calibration, and
verification using experimental results are presented. It is shown that: (1) the critical load reduces with increasing
horizontal displacement; and (2) the horizontal stiffness reduces with increasing horizontal displacement and
axial load. It is also shown that the critical load capacity at a horizontal displacement equal to the width of the
bearing is not equal to zero, as predicted by the approximate procedure used in design, but higher.
INTRODUCTION

The lateral flexibility of elastomeric seismic isolation bear-
ings leads to a fundamental period of the base isolated struc-
ture that is much longer than both its fixed-base period and
the predominant periods of the ground motion. The base shear
and the superstructure displacements are reduced, due to this
period shift, during strong earthquakes. However, large lateral
displacements occur at the isolation level due to the flexibility
of the bearings. The large lateral displacements and axial loads
on the bearings influence: (1) the critical load of bearings; (2)
the horizontal stiffness; (3) the bearing damping; (4) the bear-
ing height; and (5) the bearing overturning (if the bearings are
doweled). Hence, the stability of elastomeric bearings needs
to be considered carefully during the analysis and design of
the isolation system.

Early studies by Gent (1964) and Derham and Thomas
(1981) were based on Haringx’s theory (1948, 1949a and b);
the decrease in horizontal stiffness with increasing axial load
was predicted in both of these studies. Simo and Kelly (1984)
used finite-element modeling to study the variation of lateral
load-displacement behavior under increasing axial load. Stan-
ton et al. (1990) and Roeder et al. (1987) studied the stability
of laminated elastomeric bearings experimentally and theoret-
ically with due consideration given to axial shortening. Buckle
and Kelly (1986) studied the stability of elastomeric bearings
using a model bridge deck tested using a shaking table. Bear-
ing overturning or rollover was evident in these tests, since
the bearings were doweled. Koh and Kelly (1986, 1988, 1989)
developed a viscoelastic stability model and a mechanical
model based on bearing test results.

The theoretical approach for the stability of rubber bearings
has been to make use of Haringx’s theory (1948, 1949a and
b) based on linearity and small displacements. However, elas-
tomeric bearings experience large displacements. Currently,
this is accounted for approximately by reducing the value of
critical load, Pcro, using the ratio of the effective column area
and the actual column area at a large horizontal displacement
(Buckle and Liu 1993):
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FIG. 1. Nonlinear Analytical Model Developed Based on Koh-
Kelly Linear Model (Ks = Nonlinear Shear Stiffness; Ku = Nonlin-
ear Rotational Stiffness)

D
P = P 1 2 (1)cr cro F GB

where Pcr = critical load; Pcro = critical load given by Haringx’s
theory; D = shear displacement; and B = bearing width. The
dependence of horizontal stiffness on axial load is approxi-
mated (Buckle and Kelly 1986) by

2
P

*K = K 1 2 (2)h h F S D GPcr

where P = axial load; Kh = stiffness at zero axial load; and
= modified stiffness.*Kh

Koh and Kelly (1986, 1988) have developed a model (a
linear form of the nonlinear model shown in Fig. 1) that ac-
counts for the influence of axial load on the horizontal stiffness
of elastomeric bearings. Another paper by Koh and Kelly
(1989) describes a viscoelastic model. Koh and Kelly (1986)
compare the analytical results to experimental results. The ex-
periments were performed under displacement control with
harmonic motion of different amplitudes and constant axial
load. Since the model is linear, the shear spring and rotational
spring stiffnesses are constant. The actual stiffness of the bear-
ings is nonlinear and displacement dependent (Koh and Kelly
1986). Hence, they adjust the shear spring stiffness and the



FIG. 2. Details of 5 and 10 in. Elastomeric Bearings Tested
[Details in Parentheses for 10 in. Bearings (1.0 in. = 25.4 mm)]

rotational spring stiffness of the linear model to match the
nonlinear stiffness obtained from tests at a particular amplitude
and obtain the horizontal stiffness variation, height reduction,
and damping variation as a function of axial load. The theo-
retical results match the experimental results closely. The Koh-
Kelly (1986, 1988) linear model predicts stable postbuckling
behavior or increasing critical load with increasing horizontal
displacement. However, the actual postbuckling behavior is
unstable, as shown from the results of this study.

Experimental results (Buckle and Liu 1994; Buckle et al.
1999) show that the critical load, Pcr, decreases with increasing
horizontal displacement; however, critical load does not de-
crease linearly with displacement, as predicted by (1). Ex-
perimental results (Buckle et al. 1999) also show that the shear
force goes through a maximum as horizontal displacement in-
creases, under constant axial load, and the shear force-dis-
placement behavior is a function of axial load. Hence, the
nonlinear horizontal tangential stiffness, Kh, is dependent on
both horizontal displacement and axial load. Pcr and Kh, as
functions of horizontal displacement, are not predicted accu-
rately by Haringx’s theory, the formula in (1) and (2), or the
Koh-Kelly model (1986, 1989).

A nonlinear analytical model is developed in this study,
based on the Koh-Kelly (1986) linear model, with the objec-
tive of predicting Pcr and Kh more accurately. The analytical
model is verified using experimental results of Buckle et al.
(1999).

BEARINGS TESTED

The multilayer elastomeric bearings tested by Buckle et al.
(1999) consist of natural rubber layers and steel shims, as
shown in Fig. 2. Thin rubber layers are bonded to the steel
shims in alternating layers to produce the vertically stiff and
horizontally flexible bearing. The alternating steel and rubber
layers act to restrain the rubber layer from bulging laterally.
All bearings tested had bolted connections at the top and bot-
tom; hence, overturning was not a consideration.

A total of twelve bearings were tested. Nine of the square
bearings tested were 5 in. 3 5 in. (127 mm 3 127 mm) in
plan. Three of the square bearings tested were 10 in. 3 10 in.
(254 mm 3 254 mm) in plan. Both the 5 in. and the 10 in.
bearing properties are shown in Table 1 and Fig. 2; the 10 in.
bearing properties are given in parentheses. The rubber layer
thickness was varied to test bearings with different shape fac-
tors. The shape factor, S, is defined as

loaded area of rubber layer
S = (3)

force-free area of rubber layer

The steel shim thickness was varied to maintain the same
height. The rubber cover was 1/8 in. (3.18 mm) for all bear-
ings. All bearings tested had 1 in. (25.4 mm) thick end plates.

The rubber layer thickness in elastomeric bearings is typi-
cally less than 1/2 in. (12.7 mm); however, four of the bearing
series tested (100, 200, 400, and 500) had rubber layer thick-
nesses greater than or equal to 1/2 in. (12.7 mm) to study the
effect of low shape factor or increased slenderness. The 300
TABLE 1. Five and Ten Inch Elastomeric Bearing Details (1 in.
= 2.54 mm)

Bearings
tested

(1)

Nominal size
B 3 B9 3 H a

(in. 3 in. 3 in)
(2)

Number
of rubber

layers
(3)

Thickness
of rubber

layers
(in.)
(4)

Thickness
of steel

shim
(in.)
(5)

Shape
factor

(6)

101, 102, 103
201, 202, 203
301, 302, 303

5 3 5 3 4.375
5 3 5 3 4.375
5 3 5 3 4.385

3
4
8

0.75
0.50
0.25

0.0625
0.1250
0.0550

1.67
2.50
5.00

401
501
601

10 3 10 3 4.375
10 3 10 3 4.375
10 3 10 3 4.385

3
4
8

0.75
0.50
0.25

0.0625
0.1250
0.0550

3.33
5.00

10.00
aB = width of square bearing; B9 = breadth; H = height of bearing.

FIG. 3. Stability Test: Shear Force–Displacement Curves as
Function of Axial Load for Bearing 302 of Width B = 5 in., with
Shape Factor S = 5 (1 kip = 4.45 kN; 1 in. = 25.4 mm)

series and 600 series of bearings had 1/4 in. (6.35 mm) rubber
layer thicknesses.

The elastomeric bearings were tested using the uniaxial sin-
gle bearing test rig at the Earthquake Engineering Research
Center at the University of California at Berkeley. The test rig
apparatus consisted of a vertical loading mechanism and a hor-
izontal loading mechanism. The vertical load was generated
by the two vertical actuators on either side of the bearing. The
horizontal actuator provided the lateral force to displace the
bearing to the desired displacement. The bearings were tested
for stability individually under quasi-static conditions.

Since the 300 series bearings are more typical, the test re-
sults of one of the bearings in the series, i.e., bearing 302, is
presented in detail, and the test results of the other series (100,
200, 400, 500, and 600 series) are presented briefly. The com-
plete details of the test procedure and test results for the 100,
200, 300, 400, 500, and 600 series can be found in Buckle et
al. (1999).

TEST RESULTS

The shear force–horizontal displacement, F-u, curves are
shown in Fig. 3 as a function of axial load for bearing 302.
Two important features to be noted in Fig. 3 are as follows:
(1) the F-u curves go through a maximum as the horizontal
displacement increases, under constant axial load; and (2) the
shear force and horizontal displacement at which the maxi-
mum occurs decrease with increasing axial load. The severe
nonlinearities are clearly evident in Fig. 3.

The axial load–horizontal displacement, P-u, variation is
shown in Fig. 4 as a function of shear force for bearing 302.
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FIG. 4. Stability Test: Axial Load–Horizontal Displacement
Variation as Function of Shear Force for Bearing 302 with B = 5
in., S = 5

FIG. 5. Variation of Critical Load with Horizontal Displace-
ment of 300 Series Bearings with B = 5 in., S = 5

The equilibrium path, a smooth curve passing through discrete
points, shown in Fig. 4, at each shear force level, goes through
a limit point, which is the critical load. The equilibrium paths
are unstable past the limit point in Fig. 4; hence the critical
load decreases with increasing horizontal displacement. The
critical load, Pcr, obtained from Fig. 4 is shown in Fig. 5 as a
function of horizontal displacement. The shear force–horizon-
tal displacement curves in Fig. 3 can be used to verify the
critical load, because at Pcr the horizontal tangential stiffness
goes to zero.

In Fig. 5 it is evident that significant reduction in Pcr occurs
at horizontal displacements equal to the width of the bearing,
B = 5 in. The error bars in Fig. 5 represent the variability of
the recovered test results, since the tests were performed only
at 1, 2, 3, 4, and 5 in. horizontal displacements and the points
in between these displacements were recovered by curve fitting
techniques.

The observed reduction in Pcr cannot be predicted using the
Koh-Kelly model because it is based on linearity and small
displacements. In view of this, a nonlinear analytical model is
developed.

NONLINEAR ANALYTICAL MODEL

The nonlinear analytical model developed in this study,
shown in Fig. 1, is based on the Koh and Kelly (1986) linear
model. The key developments in this study are that the shear
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and rotational springs are considered to be nonlinear elastic
and that large displacements and rotations are considered. The
nonlinearities are based on the test results. The natural rubber
bearings considered in this study do not have significant path
dependent behavior. In view of this, the nonlinear elastic
springs are deemed to be adequate. The inclusion of the path
dependent behavior in the model and the appropriate tests
needed for the verification of such a model are the subjects of
a future study.

The developed nonlinear analytical model has two rigid el-
ements of total height l in the shape of tees connected at mid-
height by a shear spring and frictionless rollers and connected
to the top and bottom plate by moment springs and frictionless
hinges. The model has two degrees of freedom (DOF). The
shear DOF, s, is due to frictionless rollers and is resisted by a
nonlinear shear spring of stiffness Ks. The rotational DOF, u,
is due to frictionless hinges and is resisted by nonlinear rota-
tional springs of stiffness Ku/2, where Ku = rotational stiffness
or tilting stiffness. The model is loaded by axial load P and
horizontal load F at the top of the column. The top plate is
free to move in the vertical and horizontal directions; however,
it is restrained in the rotational direction. The horizontal dis-
placement, u, of the top of the column is

u = l sin u 1 s cos u (4)

The nonlinear horizontal stiffness of the model, Kh, is a func-
tion of the shear force, F, and the horizontal displacement, u.
In the nonlinear analytical model developed, both the shear
stiffness, Ks, and the rotational stiffness, Ku, vary as a function
of the shear deformation, s.

Equilibrium Equations

The equilibrium equations for the model shown in Fig. 1
with the nonlinear shear stiffness and rotational stiffness
springs are given by:

• Shear equilibrium:

2s K C uuo uK 1 2 C f s = F cos u 1 P sin u 1 (5)so sS S DDl 2r

• Rotational equilibrium:

s
K 1 2 C u = P(l sin u 1 s cos u)uo S u S DDlr

1 F(l cos u 2 s sin u) (6)

where Cs and Cu = constants; f (s/lr) is a function of s and lr,
the total thickness of all rubber layers; l = combined height of
the rubber layers and steel plates, excluding the top and bottom
steel plates; and Kso and = shear stiffness and rotationalKuo

stiffness, respectively, at zero shear strain.
The height reduction, h, can be computed using the follow-

ing equation:

h = l(1 2 cos u) 1 s sin u (7)

Eqs. (5) and (6), a nonlinear system of equations, are solved
numerically in the incremental form.

If nonlinear terms such as Cs f(s/lr), Cus/lr, u2, and su are
neglected, and the terms sin u and cos u are replaced by u and
1, respectively, for small angles, the nonlinear model reduces
to the Koh-Kelly model (1986), resulting in the following
equations:

u = lu 1 s; K u = P(lu 1 s) 1 Fl; K s = Pu 1 F (8a–c)uo so

Solving for u and s yields



(K l 1 P)Fso
u = (9a)

Kuo 22 P (K l ) 2 PsoS Dl

K Fuo
s = (9b)

Kuo 22 P (K l ) 2 PsoS Dl

The critical load can be determined by setting the denominator
of the expressions for u and s = 0:

2 22K l 6 K l 1 4K KÏso so uo so
P = (10)cr 2

To obtain relations for and Kso in terms of the bearingKuo

properties: (1) neglect the shear deformation by letting Kso

tend toward infinity to get and (2) neglect flexural defor-K ;uo

mations by letting tend toward infinity to get Kso:Kuo

(GA ) Ps eff s
K = P l; K = = (11a)uo E so

l l

where
2p (EI )eff

P = ; P = (GA ) (11b)E s s eff2l

Pcr is obtained by substituting and Kso in (10) and consid-Kuo

ering the positive solution:

(GA ) Ps eff E
P = 1 1 4 2 1 (12)cr FÎ G2 (GA )s eff

where (GAs)eff = effective shear rigidity; and (EI )eff = effective
flexural rigidity. Pcr is identical to the critical load given by
Haringx’s theory (1948, 1949a and b). The horizontal stiffness,
Kho, is given by

F
K = ; u = lu 1 s (13a)ho

u

2P P
1 2 2

F P P P Ps E E s
K = = (13b)ho S Du l P Ps1 1 1

P PE E

and the height reduction:
2lu

h = 1 su (14)
2

The horizontal stiffness, Kho, can be approximated by the fol-
lowing expression:

2P Ps
K = 1 2 (15)ho S Dl P PE s

Parameters

The elastomer properties were not available. Even when
they are available, the elastomer used in the bearing may have
somewhat different properties than the elastomer used in tests
pertaining to data sheets. It has been observed in past exper-
iments that the bearings usually have different properties than
the small elastomer specimen used to determine basic prop-
erties (Koh and Kelly 1986). In view of this, an indirect ap-
proach, similar to the one used by Koh and Kelly (1986), was
adopted to estimate the value of the shear modulus, G. The
horizontal tangential stiffness, Kh, as a function of displace-
ment was estimated from the quasi-static tests on bearing 302.
The shear modulus, G, was estimated from (15). The estimated
G was 0.2 ksi for 0% shear strain and 0.136 ksi for 100%
shear strain. The variation of G was estimated from the vari-
ation of Kh:

u
G = G 1 2 C tanh a (16)o sS S DDlr

where Go = 0.2 ksi; Cs = dimensionless constant = 0.325; and
a = dimensionless constant with a value of lr. The following
relations (Buckle and Kelly 1986; Koh and Kelly 1986) were
used to establish the effective shear rigidity and effective flex-
ural rigidity:

l
(GA ) = GA (17)s eff

lr

l
(EI ) = E I (18)eff r

lr

where l = combined height of the rubber layers and steel
plates, excluding the top and bottom plates; lr = total thickness
of all rubber layers; I = moment of inertia of the bearing about
the axis of bending; and

2E = E (1 1 0.742S ) (19)r o

where Eo = elastic modulus of rubber = 4G.
The variation of nonlinear shear stiffness, Ks, as a function

of shear deformation, s, was assumed to be similar to the es-
timated variation of G as a function of horizontal displace-
ment:

s
K = K 1 2 C tanh a (20)s so sS S DDlr

where Cs = dimensionless constant = 0.325; Kso = shear spring
stiffness at zero strain from (11); and a = dimensionless con-
stant with a value of lr. The variation of nonlinear rotational
stiffness, Ku, which yields the appropriate unstable postcritical
behavior as well as the correct behavior of critical load and
shear force as a function of horizontal displacement, is as fol-
lows:

s
K = K 1 2 C (21)uou S u Dlr

where = rotational spring stiffness at zero strain from (11);Kuo

Cu = dimensionless constant = and = dimensionlessC9a; C9u u

constant. The variation of nonlinear rotational stiffness, Ku,
when considered as a decreasing function of u—as one would
expect—led to acceptable shear force–horizontal displace-
ment, F-u, behavior. However, it also led to incorrect axial
load–horizontal displacement, P-u, behavior in the postcritical
range, inconsistent with the test results. Also, the variation of
Ku based on moment-rotational curves could not be established
consistently for all bearings from test results. Due to such in-
consistencies, Ku as a function of s/lr in (21) was adopted.
Since both s and u are internal variables, this was deemed
admissible. The reduction factor which determines theC9,u

drop in rotational stiffness, was arrived at based on the ex-
perimental results of bearings 302 and 201. The physically
motivated formula developed for based on the rubber layerC9u
thickness/shape factor is as follows:

t tu r
C9 = 2 (22)u S DB B

where tu = rubber layer of unit thickness; tr = rubber layer
thickness; and B = width of the bearing. For a square bearing
with shape factor S = B/(4tr):

1 1 1
C9 = 2 (23)u S D4 S Su
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FIG. 7. Stable Equilibrium Paths of Axial Load–Horizontal
Displacement Predicted by Koh-Kelly Model of 300 Series Bear-
ings with B = 5 in., S = 5

FIG. 6. Variation of Horizontal Tangential Stiffness with Hori-
zontal Displacement of 300 Series Bearings with B = 5 in., S = 5

where Su = shape factor of rubber layer of unit thickness; and
S = shape factor of the rubber layer. For a bearing with very
large S, tr ' 0, with B = 5 in. and Su = 1.25, = 0.2. For aC9u
bearing S = Su, tr = 1 in., = 0. For 300 series bearings,C9u

= 0.15. Hence, developed based on the shape factor ofC9 C9u u

the bearing can be used for 5 in., 10 in., or other bearings,
within limits of tr not greater than the unit thickness and B not
less than the unit length.

CALIBRATION OF ANALYTICAL MODEL USING
EXPERIMENTAL RESULTS OF 300 AND 200 SERIES
BEARINGS

The parameter in (22) was calibrated using experimentalC9u
results of bearings 302 and 201. The values Kso = 2.5 kip/in.
and = 4,016 kip/in. for 300 series bearings were obtainedKuo

based on (11). Eqs. (5) and (6) were solved numerically. The
comparison of analytical and experimental horizontal tangen-
tial stiffness, Kh, is shown in Fig. 6 for 300 series bearings.
To illustrate the effect of having constant Ks and Ku, as in the
Koh-Kelly model, equilibrium paths for the case with spring
stiffnesses set to Kso and are shown in Fig. 7 for 300 seriesKuo

bearings. The equilibrium paths indicate stable postcritical be-
havior, as shown by Koh and Kelly (1988). The equilibrium
paths for the nonlinear analytical model developed in this
950 / JOURNAL OF STRUCTURAL ENGINEERING / SEPTEMBER 1999
FIG. 8. Unstable Equilibrium Paths of Axial Load–Horizontal
Displacement Predicted by Nonlinear Analytical Model of 300
Series Bearings with B = 5 in., S = 5; Critical Load Occurs at
Limit Point of Each Equilibrium Path

study for 300 series bearings are shown in Fig. 8. The equi-
librium paths are unstable past the limit point, as observed in
the experimental results. The critical load occurs at the limit
point of each equilibrium path, and the horizontal tangential
stiffness, Kh, is equal to zero at the limit point. Due to the
unstable equilibrium paths, the critical load decreases with in-
creasing horizontal displacement. The critical load–horizontal
displacement, Pcr-u, curve from the analytical model for 300
series bearings and experimental results for bearing 302 is
shown in Fig. 5. The analytical and experimental results are
in good agreement.

The analytical shear force–horizontal displacement, F-u,
curves for 300 series bearings are compared with test results
for bearing 302 in Fig. 9 at different axial load levels. From
Fig. 9 it is evident that the analytical model captures the non-
linear behavior and axial load effects accurately. Fig. 9 also
shows the horizontal tangential stiffness variation with hori-
zontal displacement and axial load. Note that the horizontal
tangential stiffness, Kh, is zero at the displacement where the
shear force–displacement curve is maximum. The horizontal
stiffness decreases with increasing axial load and horizontal
displacement.

Fig. 10 shows the horizontal tangential stiffness variation as
a function of horizontal displacement and axial load. The Kh-
P-u surface in Fig. 10 shows that the horizontal tangential
stiffness, Kh, decreases with increasing axial load and hori-
zontal displacement. The effects of the nonlinearities of the
elastomeric bearing and the axial load are significant, as evi-
dent in Fig. 10. The effects of axial load and horizontal dis-
placement on horizontal stiffness can alter the seismic re-
sponse of base isolated structures (Nagarajaiah et al. 1991).

The height reduction due to horizontal displacement of the
bearing, given by (7), as a function of axial load is shown in
Fig. 11 for 300 series bearings. The experimental results for
bearing 302, as shown in Fig. 11, do not include the vertical
deformation due to axial flexibility of the bearing; this esti-
mated deformation has been subtracted from the overall height
reduction. This is necessary, as the new model does not include
axial flexibility. Comparison between the analytical and ex-
perimental results indicates that useful estimates of the height
reduction can be obtained.

The equilibrium paths for the 200 series bearings are shown
in Fig. 12. The critical load–horizontal displacement, Pcr-u,
curve from the analytical model for 200 series bearings and
the experimental results of bearing 201 are shown in Fig. 13.



FIG. 9. Results for 300 Series Bearings with B = 5 in., S = 5;
Shear Force–Horizontal Displacement Curves at Maximum
when Horizontal Tangential Stiffness Curves Are at Zero

FIG. 10. Variation of Horizontal Tangential Stiffness, Kh, with
Axial Load, P, and Horizontal Displacement, u, of 300 Series
Bearings with B = 5 in., S = 5

The analytical and experimental results are in good agreement.
The critical load drops with increasing horizontal displacement
because the equilibrium paths are unstable. The critical load
at a horizontal displacement equal to the width of the bearing
(5 in.) is higher than the value of zero estimated by (1). The
analytical shear force–horizontal displacement, F-u, curves
J

FIG. 11. Height Reduction due to Horizontal Displacement as
Function of Axial Load for 300 Series Bearings with B = 5 in.,
S = 5

FIG. 12. Unstable Equilibrium Paths of Axial Load–Horizontal
Displacement of 200 Series Bearings with B = 5 in., S = 2.5; Crit-
ical Load Occurs at Limit Point of Each Equilibrium Path

FIG. 13. Variation of Critical Load with Horizontal Displace-
ment of 200 Series Bearings with B = 5 in., S = 2.5
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FIG. 14. Results for 200 Series Bearings with B = 5 in., S = 2.5;
Shear Force–Horizontal Displacement Curves at Maximum
when Horizontal Tangential Stiffness Curves Are at Zero

FIG. 15. Unstable Equilibrium Paths of Axial Load–Horizontal
Displacement of 100 Series Bearings with B = 5 in., S = 1.67;
Critical Load Occurs at Limit Point of Each Equilibrium Path

compared with test results for bearing 201 at different axial
load levels, as shown in Fig. 14, indicate good agreement.

EXPERIMENTAL VERIFICATION OF ANALYTICAL
MODEL

The model was verified using the test results of 100, 400,
500, and 600 series bearings, which were not used in the cal-
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FIG. 17. Results for 100 Series Bearings with B = 5 in., S =
1.67; Shear Force–Horizontal Displacement Curves at Maxi-
mum when Horizontal Tangential Stiffness Curves Are at Zero

FIG. 16. Variation of Critical Load with Horizontal Displace-
ment of 100 Series Bearings with B = 5 in., S = 1.67

ibration of the model. The results of the verification are pre-
sented.

The equilibrium paths for the 100 series bearings are shown
in Fig. 15. The critical load–horizontal displacement, Pcr-u,
curve from the analytical model for 100 series bearings and
the experimental results of bearing 103 are shown in Fig. 16.
The Pcr-u curve and test results shown in Fig. 16 for bearing
103 indicate that the analytical results capture the trend in the
experimental results satisfactorily; the differences between the
experimental and analytical results can be partly attributed to
variability in the recovered test data. It is also evident from



FIG. 18. Results for 10 in. Bearings 401 (S = 3.33), 501 (S = 5)
and 601 (S = 10); Shear Force–Horizontal Displacement Curves
and Critical Load–Horizontal Displacement Curves, Obtained
from Experiments, Analytical Model, and Approximate Formula
in Eq. (1)

Fig. 16 that the drop in critical load as a function of horizontal
displacement is not as significant as in 300 series bearings.
Substantial critical load capacity exists at a displacement equal
to the width of the bearing (5 in.) when compared with a value
of zero obtained using (1). The comparison of analytical shear
force–horizontal displacement, F-u, curves with test results for
bearing 103 at different axial load levels, as shown in Fig. 17,
is satisfactory.

The Pcr-u curves from test results for 401, 501, and 601
series bearings could not be obtained because the bearings
were not loaded to such high levels of axial load due to test
setup limitations. The analytical Pcr-u curves for 401, 501, and
601 series bearings are shown in Fig. 18. The Pcr-u curves
based on the approximate formula in (1) are also shown. It is
evident that critical load capacity exists at horizontal displace-
ments equal to the width of the bearing (10 in.) when com-
pared with the zero critical load predicted in (1). The approx-
imate formula is not conservative at all horizontal
displacements. A comparison between analytical and experi-
mental shear force–horizontal displacement curves at low ax-
ial load levels is shown in Fig. 18 for bearings 401, 501, and
601. The comparison is satisfactory.

In a separate study (Buckle et al. 1999) nonlinear finite-
element analysis results obtained for 200, 300, 500, and 600
series bearings compared favorably with the results of the an-
alytical model developed in this study. Interested readers are
referred to Buckle et al. (1999).

CONCLUSIONS

A nonlinear analytical model has been developed based on
the Koh-Kelly linear model. The model includes large dis-
placements and rotations and nonlinearities in shear and ro-
tational stiffness of the bearing. The model is capable of pre-
dicting the nonlinear and postcritical behavior of elastomeric
bearings of different sizes and shape factors. The postcritical
behavior is unstable, as evident from the test results. This be-
havior can be predicted only when the nonlinearities are fully
accounted for. A linear model will predict stable postcritical
behavior. The developed nonlinear model predicts the unstable
postcritical behavior successfully.

The developed nonlinear analytical model satisfactorily pre-
dicts the behavior observed in the test results of the bearings,
such as: (1) the reduction in critical load with increasing hor-
izontal displacement; (2) the nonlinear shear force–horizontal
displacement behavior as a function of axial load (the shear
force–horizontal displacement curves go through a maximum
as the horizontal displacement increases; the shear force and
horizontal displacement at which the maximum occurs de-
crease with increasing axial load); (3) the horizontal stiffness
variation, which decreases with increasing axial load and hor-
izontal displacement; and (4) the height reduction due to in-
creasing horizontal displacement.

Other important conclusions of this study are as follows. A
higher critical load capacity exists at a horizontal displacement
equal to the width of the bearing and is not equal to zero, as
predicted by the approximate design formula. The approximate
design formula is not conservative at all horizontal displace-
ments. The reduction in critical load with increasing horizontal
displacement depends on the reduction in shear stiffness and
rotational stiffness as a function of shear displacement. The
reduction in rotational stiffness depends on the shape factor
and the rubber layer thickness of the bearing in comparison
with a rubber layer of unit thickness. The calibration and ver-
ification of the analytical model is based on a limited set of
test results; hence, further investigations are needed.
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